给定平面上的n个点,求最多有多少个点共线

给定一个二维平面上的n个点,找出同一条直线上的最大点数。
解法:
穷举,注意斜率不适用float作为键,精度损失。

class Solution {
public:
    int gcd(int x,int y) { //求最大公约数
        if (y == 0)
            return x;
        else
            return  gcd(y, x%y);
    }
    int maxPoints(vector<Point> &points) {
        if(points.empty())
            return 0;
        else if(points.size() <= 2)
            return points.size();
        sort(points.begin(), points.end(), [](Point a, Point b){return a.x<b.x;});
        long long ans = 0;
        int n = points.size();
        for(int i = 0; i < n; i++){
            map<pair<int, int>, long long> m;
            long long  cover = 0, vertical = 0, maxk = 0;
            for(int j = i+1; j<n; j++){
                int dx = points[i].x - points[j].x;
                int dy = points[i].y - points[j].y;
                if(dx == 0 && dy == 0)  //两点重合
                    ++cover;
                else if(dx == 0)      //两点横坐标相等(不重合)
                    maxk = max(maxk, ++vertical);
                else{
                    int g = gcd(dx, dy);
                    dx/=g, dy/= g;
                // 计算最大公约数:欧几里得算法
               // 斜率不适用float作为键,精度损失,使用除以最大公约数后的pair作为键
                    maxk = max(maxk, ++m[make_pair(dx, dy)]);
                }
            }
            ans = max(ans, maxk + cover +1);
        }
        return ans;
    }
};
### 计算n条直线中p条共的最大平面分隔区域数 对于平面上 $ n $ 条直线的情况,如果没有任何特殊约束(即任意两条直线都相交且无三线共),那么这些直线能够划分出的最多区域数目可以通过以下公式表示: $$ R(n) = \frac{n(n+1)}{2} + 1 $$ 当有 $ p $ 条直线共时,意味着这 $ p $ 条直线不再形成新的交组合[^2]。因此,我们需要调整原始公式的计算方式来适应这一特殊情况。 具体而言,在这种情况下,$ p $ 条共直线实际上只贡献了一个额外的区域分割效果而非每一对直线都能增加一个新的交。所以,可以先考虑剩余的 $ n-p $ 条不共直线按照常规方法产生的区域数量,再加入由那 $ p $ 条共直线带来的影响。 于是总的区域数变为: $$ R'(n,p) = R(n-p) + (p-1)(n-p)+1 $$ 其中, - $ R(n-p)=\frac{(n-p)((n-p)+1)}{2}+1 $ 代表其余独立分布直线所能形成的分区; - $(p-1)(n-p)$ 表达的是那些通过非共处与其他各条单独直线交叉所新增加的部分; - 加上最后那个 “1”,是因为所有共同交汇于某单一位置上的直线组本身也会定义至少一个新域。 最终整理后的通用表达形式如下所示: ```python def max_regions_with_common_point(n, p): independent_lines = n - p regions_from_independent = (independent_lines * (independent_lines + 1)) // 2 + 1 additional_regions_by_p = (p - 1) * independent_lines + 1 if p > 0 else 0 total_regions = regions_from_independent + additional_regions_by_p return total_regions ``` 此函数实现了上述逻辑并返回给定条件下可能达到的最大平面分隔区堿数值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值