字符串S中包含字符串T的所有不同的子序列

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, “ACE” is a subsequence of “ABCDE” while “AEC” is not).

Here is an example:
S = “rabbbit”, T = “rabbit”

Return 3.

看到有关字符串的子序列或者配准类的问题,首先应该考虑的就是用动态规划Dynamic Programming来求解,这个应成为条件反射。而所有DP问题的核心就是找出递推公式,想这道题就是递推一个二维的dp数组,下面我们从题目中给的例子来分析,这个二维dp数组应为:
这里写图片描述
首先,若原字符串和子序列都为空时,返回1,因为空串也是空串的一个子序列。若原字符串不为空,而子序列为空,也返回1,因为空串也是任意字符串的一个子序列。而当原字符串为空,子序列不为空时,返回0,因为非空字符串不能当空字符串的子序列。理清这些,二维数组dp的边缘便可以初始化了,下面只要找出递推式,就可以更新整个dp数组了。我们通过观察上面的二维数组可以发现,当更新到dp[i][j]时,dp[i][j] >= dp[i][j - 1] 总是成立,再进一步观察发现,当 T[i - 1] == S[j - 1] 时,dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1](dp[i-1][j-1]表示取T[i-1]和S[j-1]相等的结果,dp[i][j-1]表示取T[i-1]和S[j-2]相等的结果),若不等, dp[i][j] = dp[i][j - 1],所以,综合以上,递推式为:
dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0)

    int numDistinct(string S, string T) {
        if(S.empty())
            return 0;
        int n = T.size();
        int m = S.size();
        vector<vector<int>> vec(n+1, vector<int> (m+1, 0));
        for(int i = 0; i< m; i++){ 
            vec[0][i] = 1;
        }
        for(int i = 1; i<= n; i++){
            for(int j = 1; j <= m; j++){
                if(T[i-1] != S[j-1]) vec[i][j] = vec[i][j-1];
                else vec[i][j] = vec[i][j-1]+vec[i-1][j-1];
            }
        }
        return vec[n][m];
    }
阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页