问题描述:给定一个数组a,数组中的元素有正数也有负数,数组中的一个或连续多个数组成一个子数组。求这些所有子数组的最大和。例如:a={-1, 2, 3, -4, 5},它的最大和应该是:2+3+(-4)+5=6。
1、暴力遍历。从i=0开始到i=a.length-1,开始往后加,遍历所有的子数组,然后比较每一个子数组的和。时间复杂度O(n^2),空间复杂度O(1)。代码如下:
public int calMaxSumOfArray(int[] a) {
if (null == a) {
return 0;
}
if (a.length == 1) {
return a[0];
}
int sum = a[0];
int temp;
for (int i = 0; i < a.length - 1; i++) {
temp = a[i];
if (sum < temp) { // 这里需要判断一下该数是否比sum大,因为有可能这个数是整个数组的最大子序列和
sum = temp;
}
//开始从a[i]往它之后遍历,相加,再跟sum对比
for (int j = i + 1; j < a.length; j++) {
temp = temp + a[j];
if(sum < temp) {
sum = temp;
}
}
}
return sum;
}
2、动态规划。状态方程:max(dp[i]) = getMax(max(dp[i-1]) + a[i], a[i])。我们从头开始遍历数组,遍历到a[i]时,最大和可能是max(dp[i-1])+a[i],也可能是a[i]。时间复杂度O(n),空间复杂度O(n)。代码如下:
public int calMaxSumOfArray(int[] a) {
if (null == a) {
return 0;
}
if (a.length == 1) {
return a[0];
}
int sum = a[0];
int temp = a[0];
for (int i = 1; i < a.length; i++) {
temp = max(temp + a[i], a[i]);
if (sum < temp) {
sum = temp;
}
}
return sum;
}
public int max(int a, int b) {
return a > b ? a : b;
}
3、非动态规划的方法。我们从头开始累加,初始sum=a[0],临时变量temp=a[0]。从i=1开始,temp = temp+a[i],如果temp小于0,并且发现前面加过的数小于sum,那么舍弃前面的累加值,从i+1开始。代码如下:
public int calMaxSumOfArray(int[] a) {
if (null == a) {
return 0;
}
if (a.length == 1) {
return a[0];
}
int sum = a[0];
int temp = a[0];
for (int i = 1; i < a.length; i++) {
if (temp < 0) {
temp = 0;
}
temp = temp + a[i];
if (sum < temp) {
sum = temp;
}
}
return sum;
}