Problem A. 中位数
题目描述
给定一个长度为N的非降数列,求数列的中位数。
中位数:当有序数列的项数N为奇数时,处于中间位置的变量即为中位数;当N为偶数时,中位数则为处于中间位置的两个数的平均数。
输入格式
输入数据第一行是一个整数T(1<=T<=100),表示测试数据的组数。
对于每组测试数据:
第一行是一个正整数N(1<=N<=100),表示数列长度。
第二行有N个整数,整数之间用空格隔开,所有的整数都不超过100000,表示这个数列的元素。
输出格式
对于每组测试数据,输出数列的中位数,请不要输出小数点末尾多余的0。
输入样例
2
4
1 1 2 2
5
1 1 2 2 3
输出样例
1.5
2
说一点:%g用来输出实数,它根据数值的大小,自动选f格式或e格式(选择输出时占宽度较小的一种),且不输出无意义的0。即%g是根据结果自动选择科学记数法还是一般的小数记数法。
这题的精度用%g可以混过去的,不行的话其实自己写个函数处理下也是简单的。比如用sprintf(s,”%lf”,f)把实数变成字符串,再把后面没用的0去掉就行了。
#include<stdio.h>
int main() {
int T,a[100];
scanf("%d",&T);
while(T--) {
int N;
scanf("%d",&N);
for(int i = 0;i < N;i++) {
scanf("%d",&a[i]);
}
if(N % 2) {
printf("%d\n",a[N / 2]);
} else {
printf("%g\n",(a[N / 2] + a[N / 2 - 1]) / 2.0);
}
}
}
Problem B. 内存分配
题目描述
在操作系统中,内存分配是非常重要的工作。
已知内存空间由N个内存块组成,这些内存块从1到N编号,进行内存分配时,操作系统将选择一块大小足够的内存全部分配给请求内存的进程。例如,当进程请求10MB的内存时,操作系统必须向该进程分配一个不小于10MB的内存块。内存块不能被重复分配。
操作系统有三种基本的分配方式,分别为:
首次适应:从1号到N号内存块依次查找,直到找到第一块足够大的且未分配出去的内存块,将其分配给进程。
最佳适应:找到当前未分配出去且大小足够的内存块中最小的内存块分配给进程。
最差适应:找到当前未分配出去且大小足够的内存块中最大的内存块分配给进程。
其中,最佳适应是应用最为广泛的分配方式。现在,操作系统要依次处理M个进程的内存请求,请按照最佳适应方式分配内存,并输出相应分配到的内存块的大小。如果没有大小足够的内存块可以满足当前请求,则输出“NULL”(不包含引号),并跳出该请求。
输入格式
输入数据的第一行是测试数据组数T(T<=50)
每组数据由4行构成:
第一行为一个整数N(1<=N<=100),表示有N个内存块。
第二行有N个整数,第i个整数表示第i块内存块的大小。
第三行