自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(295)
  • 资源 (8)
  • 收藏
  • 关注

原创 将你的GGUF模型发布到Ollama社区

【代码】将你的GGUF模型发布到Ollama社区。

2024-05-13 09:45:48 109

原创 使用Ollama从头构建Embedding和RAG系统

检索增强生成(RAG)赋予大型语言模型新的能力,使其能够与任何大小的文档或数据集进行互动。接下来,请跟随我一起了解如何解析和操作文档,探讨如何利用嵌入向量来描述抽象概念,实现一种简单而强大的方法,以找出文档中与特定查询最相关的部分,并最终构建一个脚本,使本地托管的大型语言模型能够处理您自己的文档。

2024-04-05 15:33:23 1568

原创 【大语言模型】Ollama使用指北

Ollama 默认提供 OpenAI 的兼容 API,默认端口是 11434,默认模型名是 run 后面使用的模型名,如果想使用 OpenAI 的模型名,可以通过ollama cp的方式,为模型起一个临时的名称。

2024-02-26 20:34:22 1653 1

原创 使用argparse参数化你的Python代码

【代码】使用argparse参数化你的Python代码。

2023-10-30 09:41:03 161

原创 arxiv.org搜索特定会议特定年份以及特定关键词的论文

【代码】arxiv.org搜索特定会议特定年份以及特定关键词的论文。

2023-10-21 19:41:43 193

原创 ArXiv论文上传与发表的问题解决记录

在使用Latex编辑论文参考文献部分时,一般在百度谷歌学术上只能够获取到BibTex格式(bib),而有些期刊会议需要提供BibItem格式(bbl)。根据查看到的资料,详细描述一种批量将bib格式文件转为bbl文件,而bbl文件中的内容即为BibItem格式。

2023-07-17 17:50:56 529

原创 在具体领域中微调LLM模型的方案实施建议

大参数的模型比高精度的模型要好;模型的预训练虽然会付出极高的代价,但是效果也会提升比较明显;强化学习在一般的微调任务中很有必要加入;适当的在数据中引入历史对话可能有一定的提升效果;

2023-06-02 19:17:27 1172 1

原创 Huggingface上传自己的预训练模型(大小权重都可以)

第一次上传可能出现让你输入账号密码,只需要按照要求输入即可。这里需要先到网站页面上进行设置然后复制过来进行登录。克隆来以后就可以把需要上传的文件放入到这个下载的。命令进行登录,登录过程中需要输入用户的。如果你想要手动创建,则可以直接在。就可以跳过这一步了。这个时候如果你发现你。

2023-05-26 18:22:11 2141 1

原创 给静态博客设置一个访客地图

​最近看见一个很酷的东西,也就可以在自己的博客中添加访问地图,让访问者可以浏览到自己的博客的访客都来自什么地方,网关的地址为:​需要使用,首先需要进行登录,但是登录过程中有些麻烦,很有可能会出现网站访问不到的情况,要是出现这样的情况需要根据自己的实际情况确定自己的“上网方式”,申请完账号之后,填写自己网站的访问域名:​。

2023-04-01 10:38:12 351 2

原创 Meta的LLama模型非官方下载方法

Llama模型是一个用于自然语言处理的大型语言模型,它由Meta AI开发,拥有65亿个参数。该模型的目的是帮助研究者在AI的子领域中推进他们的工作。Llama模型结构巨大,最小的模型LLaMA 7B也经过了超过1万亿个代币的训练。Llama模型的论文比较冗长,但通过阅读页面,可以了解该模型的下载方法和使用指南。除此之外,Llama模型的表现被认为比OpenAI的ChatGPT更优秀,部署教程和泄露版模型已经都被公开。

2023-03-29 09:10:47 11379 5

原创 让谷歌浏览器不再显示不安全内容的提示

让谷歌浏览器不再显示不安全内容的提示

2023-03-22 21:11:58 1238 1

原创 centos7 安装 python3.9

登陆账户(root账户或者拥有 sudo 权限的账户)使用 wget 下载 python3.9。使用 tar 解压压缩包。配置 python 安装。

2023-03-22 18:27:28 694

原创 完成向Git项目提交一次Pull requests的流程

prGithubforkpr4. 进行更改并提交,执行git status, 查看变更5. 执行git add命令,将这些变更加入到刚刚创建的分支git add .6. 使用git commit提交这些变更7. 把变更推送到8. 创建拉取请求,在GitHub仓库中可以看到一个按钮,点击它请提供必要的说明来介绍你所做的变更(可以使用“#”来引用议题)。提交拉取请求。恭喜!你已经成功创建了第一个拉取请求。

2023-03-14 13:27:03 507

原创 为YOLOv5、YOLOv8带来全新的数据增强方式-合成雾增强算法

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-03-10 22:39:27 6479 8

原创 PyTorch保存和加载模型的两种方式

与Tensorflow、Keras等框架一样,Pytorch也提供了两种保存模型的方式:只保存模型参数保存完整模型。

2023-02-13 23:46:00 309

原创 【深度学习】如何分配训练集、验证集、测试集比例

对于传统机器学习阶段(数据集在万这个数量级),一般分配比例为训练集和测试集的比例为7:3或是8:2。为了进一步降低信息泄露同时更准确的反应模型的效能,更为常见的划分比例是训练集、验证集、测试的比例为6:2:2。对于小规模样本集(几万量级),常用的分配比例是 60% 训练集、20% 验证集、20% 测试集。

2023-02-13 23:38:37 5801 2

原创 YOLOv5改进之替换Backbone为mobilenet v2

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 13:08:20 1255

原创 YOLOv5改进之替换Backbone为efficientnet b1

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 13:05:51 497

原创 YOLOv5改进之替换Backbone为EfficientNetV2 Small

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 13:01:47 1762 3

原创 YOLOv5改进之替换Backbone为ResNet50

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 12:59:02 4361 7

原创 YOLOv5改进之替换Backbone为ResNet34

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 12:55:59 712

原创 YOLOv5改进之替换Backbone为ResNet18

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 12:54:01 1886 3

原创 YOLOv5改进之替换Backbone为RegNety 400mf

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 12:50:43 355

原创 YOLOv5改进之替换Backbone为EfficientNet B0

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 12:47:08 867 1

原创 YOLOv5改进之替换Backbone为MobileNetV3 Small

BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!目前BestYOLO是一个完全基于进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。

2023-01-29 12:21:50 1859 2

原创 人工智能、机器学习、深度学习相关术语表

适用于[License](https://github.com/microsoft/AI-System/blob/main/LICENSE)版权许可。

2023-01-16 10:18:05 320

原创 YOLOv8微信小程序来了,支持分类检测分割模型

YOLOv8微信小程序来了,支持分类检测分割模型

2023-01-15 16:02:14 1493 2

原创 YOLOv8模型网络结构图

YOLOv8模型网络结构图

2023-01-09 15:11:15 10963 8

原创 Latex空行消除大杀器(该方法价值一万块)

Latex空行消除大杀器(该方法价值一万块)

2022-12-29 12:50:39 5842 10

原创 Albumentations数据增强部分方法使用和可视化展示

有人使用Albumentations库的Blur, Flip, RandomBrightnessContrast, ShiftScaleRotate, ElasticTransform, Transpose, GridDistortion, HueSaturationValue, CLAHE, CoarseDropout在图像分类比赛中取得第二名,所以本人写了这篇文章)。缩放图像,使最小边等于max_size,保持初始图像的纵横比。缩放图像,使最大边等于max_size,保持初始图像的纵横比。

2022-12-28 18:01:22 2109 1

原创 Timm打图像分类竞赛入门使用

【代码】Timm打图像分类竞赛入门使用。

2022-12-22 23:52:10 388

原创 在服务器安装jupyter并在本地访问

我们在远程登录`Linux`服务器时,经常希望在本地浏览器端打开`jupyter notebook`,这些命令可以实现这个操作。

2022-12-22 23:32:51 737

原创 何凯明最新一作MAE(mask掉图片的部分信息也能重建识别)

本文表明,掩码自编码器(Masked Autoendoers, MAE)是可用于计算机视觉的可扩展自监督学习器。MAE手段很简单:我们将输入图像分块并随机掩码,重建丢失的像素。它基于两个核心设计:1、我们开发了一个非对称的编码-解码架构,其中编码器只在可见的图像子块上进行操作,以及一个轻量级的解码器,它从潜在表征和掩码令牌重构原始图像;2、我们发现高比例的图像遮挡,例如75%,会产生一个具有重要意义的自监督任务。结合这两种设计使我们能够有效并高效地训练大模型:我们提升训练速度三倍之多并提升精度。

2022-12-22 21:54:32 1036

原创 外部注意力机制与内部注意力机制

过高的问题依然存在。为此作者提出了外部注意力模块,计算输入像素与外部的记忆矩阵单元M之间的注意力。相比自注意力机制,外部注意力中的Key与Value被拿到了外部,不再由特征投射产生。自注意力是注意力机制的一种特殊情况,其核心思想为通过计算特征内部元素之间的联系来获得大范围内的依赖关系。而在外部注意力中,key被拿到了网络外部,因此可以习得数据集的全局状况。这里的M为一个与输入无关的可学习参数,作为数据集相关的记忆器。注意力图是通过矩阵相乘来计算的,对于输入特征的尺度敏感。与自注意力不同的是,上式中的。

2022-12-14 21:33:35 1319

原创 读懂ShuffleNet V2

深度卷积神经网络的架构创新显著的提升了在ImageNet数据集上的分类准确率,如VGG、GoogleNet、ResNet、DenseNet、ResNeXt、SE-Net以及自动网络架构搜索获得的方案。然而除了准确率,计算复杂度是另一个重要的考虑因素。真实场景应用更加关注在给定运算平台的前提下,如何利用限的资源获得最佳的准确率。这种思路催生了一系列轻量级的架构设计如Xception、MobileNet、ShuffleNet与CondenseNet。

2022-12-14 21:23:27 748

原创 【竞赛总结】“域见杯”医检宫颈癌图像分类比赛

【竞赛总结】“域见杯”医检宫颈癌图像分类比赛

2022-12-10 20:11:20 746

原创 图像配准开源数据集资源汇总

数据集由 1024 x 1024 位图 (.bmp) 图像组成,每个图像包含一个 16 x 16 图像块阵列。该HPatches数据集被用作局部特征评估挑战的基础,该挑战 在 ECCV 2016 期间的局部特征:最新技术、未解决的问题和性能评估研讨会中提出。总共包含从航空数据集创建的 864 个图像对、从细胞学数据集创建的 5040 个图像对以及从组织学数据集创建的 536 个图像对。这是一个包含 20 个身体部位和其他部位的 2481 张 X 射线的数据集,由放射科医师以多标签方式进行注释。

2022-12-10 12:35:53 3709 1

转载 医学图像配准概览和深度学习图像配准前沿热点论文VoxelMorph

为了减少医生受到的X线辐射量,可以在术前进行3D血管影像的采集,在术中进行2D的实时血管造影影像采集,然后将2D图像配准到3D影像中,从而减少医生经验的依赖性。为了提升医疗AI辅助诊断的分类准确率,可以使用传统图像配准方法(比如基于SIFT算子的特征点匹配)进行图像的旋转与缩放校正,也可以使用在深度学习网络中额外接入一个Spatial Transform Network。常规的手术规划依赖于丰富经验的医师的脑海中的精确的三维重建,这种重建经验是稀缺的,且有较强的主观性。图像配准有很多分类方式。

2022-12-10 12:11:04 1061

原创 论文概念辨析:Introduction 和 Problem Statement 有什么区别?

而问题陈述(problem statement)通常出现在用来申请基金的研究提案中,它简要说明了你想研究的某个问题、某种状态,或某种情况。通过描述现状和理想情况间的差距,强调拉近差距的必要性,进而得出项目目标。引言(Introduction)放在文章开头,用来交代研究背景,引导读者从给出的信息中理解研究目标。问题陈述写于研究早期,通常在选定研究领域之后(或找到要解决的问题后),也就是申请基金时写的。而引言则是在研究完成后的论文写作中完成的。总的来说,引言负责提供背景信息,包括文献综述,研究目的,研究问题;

2022-12-09 13:55:11 483

原创 条形图、柱状图绘制实战

条形图、柱状图绘制实战

2022-12-07 13:58:58 127

机器学习/深度学习500问

机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深度学习500问机器学习/深

2023-03-27

高端上档次引导页HTML源码

高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码高端上档次引导页源码

2023-03-27

机器学习、深度学习画图PPT模板

机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板机器学习、深度学习画图PPT模板

2023-03-27

目标检测跌倒检测数据集

跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等各种数据格式转化。百度网盘链接,永久不失效。跌倒检测数据集,可用于目标检测模型训练,支持VOC,COCO,YOLO等

2022-11-13

十种林业害虫数据集,采取VOC格式标注,可用于目标前检测模型训练

压缩包提供下载的百度网盘链接,请放心购买,永久不失效。 该数据集为自采集数据集,包含的数据类别:10类(丝带凤蝶、人纹污灯蛾、松墨天牛、日本脊吉丁、杨小舟蛾、杨扇舟蛾、柳蓝叶甲、桑天牛、褐边绿刺蛾、黄刺蛾),数据量:2262张,其中标注格式为VOC格式,可用于RCNN、YOLOv1-YOLOv7等各种目标检测模型训练。 该数据集为自采集数据集,包含的数据类别:10类(丝带凤蝶、人纹污灯蛾、松墨天牛、日本脊吉丁、杨小舟蛾、杨扇舟蛾、柳蓝叶甲、桑天牛、褐边绿刺蛾、黄刺蛾),数据量:2262张,其中标注格式为VOC格式,可用于RCNN、YOLOv1-YOLOv7等各种目标检测模型训练。 该数据集为自采集数据集,包含的数据类别:10类(丝带凤蝶、人纹污灯蛾、松墨天牛、日本脊吉丁、杨小舟蛾、杨扇舟蛾、柳蓝叶甲、桑天牛、褐边绿刺蛾、黄刺蛾),数据量:2262张,其中标注格式为VOC格式,可用于RCNN、YOLOv1-YOLOv7等各种目标检测模型训练。

2022-07-13

动态透明调调的交互式个人主页HTML源码

效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy 效果请查看:https://mianbaoduo.com/o/bread/mbd-YpqZlpZy

2022-07-13

基于百度EasyDL图像分类的通用微信小程序

百度EasyDL是零门槛AI开发平台,提供从数据采集、标注、清洗到模型训练、部署的一站式AI开发能力。对于各行各业有定制AI需求的企业用户来说,无论您是否具备AI基础,EasyDL设计简约,极易理解,最快5分钟即可上手学会,15分钟完成模型训练。本资源提供了将自己的图像分类任务训练并且通过公有云部署以后使用微信小程序部署给用户使用,使用简单,通过修改您训练的模型的AK和SK即可对接入该小程序,同时该小程序更可以在您的开发下拓展百度EasyDL的目标检测,图像分类等各种任务需求。

2022-07-13

手工采集的斑马线与人行道标注数据集,可用于YOLOv5等目标检测任务的训练

压缩包内提供百度网盘下载链接,永不失效。 该数据集为自采集数据,包含训练集及验证集3880张,测试集1770张。标签为人行道和斑马线两种标签,目前支持XML与YOLO格式的目标检测网络训练。可用于道路安全、行人礼让等任务探索。 该数据集为自采集数据,包含训练集及验证集3880张,测试集1770张。标签为人行道和斑马线两种标签,目前支持XML与YOLO格式的目标检测网络训练。可用于道路安全、行人礼让等任务探索。 该数据集为自采集数据,包含训练集及验证集3880张,测试集1770张。标签为人行道和斑马线两种标签,目前支持XML与YOLO格式的目标检测网络训练。可用于道路安全、行人礼让等任务探索。

2022-07-13

可用于深度学习或者图像处理研究的农作物病虫害数据集

压缩包内提供百度网盘下载链接,永不过期! 该数据集包含了水稻、玉米、小麦、甜菜、苜蓿、葡萄、柑橘 、芒果共8种作物的75000 多幅图像。前五种作物为大田作物(FC, field crops),后三种为经济作物(EC,economic crops)。该数据集可以用于深度学习与农作物方面图像处理研究。 该数据集包含了水稻、玉米、小麦、甜菜、苜蓿、葡萄、柑橘 、芒果共8种作物的75000 多幅图像。前五种作物为大田作物(FC, field crops),后三种为经济作物(EC,economic crops)。该数据集可以用于深度学习与农作物方面图像处理研究。 该数据集包含了水稻、玉米、小麦、甜菜、苜蓿、葡萄、柑橘 、芒果共8种作物的75000 多幅图像。前五种作物为大田作物(FC, field crops),后三种为经济作物(EC,economic crops)。该数据集可以用于深度学习与农作物方面图像处理研究。

2022-07-13

YOLOv5快速训练助手

YOLOv5自诞生发展到现在的version6.1版本,一直被官方应用在工农商学各个行业中,但是每次出于数据制作的麻烦总是不可避免,本工具为个人亲手所写,是市面上第一个YOLOv5的数据集制作助手,它能在1分钟之内完成满足YOLOv5训练的数据集模式。除了笔者已开发的功能,还支持二次开发创作。 YOLOv5自诞生发展到现在的version6.1版本,一直被官方应用在工农商学各个行业中,但是每次出于数据制作的麻烦总是不可避免,本工具为个人亲手所写,是市面上第一个YOLOv5的数据集制作助手,它能在1分钟之内完成满足YOLOv5训练的数据集模式。除了笔者已开发的功能,还支持二次开发创作。 YOLOv5自诞生发展到现在的version6.1版本,一直被官方应用在工农商学各个行业中,但是每次出于数据制作的麻烦总是不可避免,本工具为个人亲手所写,是市面上第一个YOLOv5的数据集制作助手,它能在1分钟之内完成满足YOLOv5训练的数据集模式。除了笔者已开发的功能,还支持二次开发创作。

2022-06-08

可用于深度学习训练的烟雾火灾数据集

自采集和搜集整理的烟雾和火灾数据集,数据集包括2w+图片,所有图片均采用VOC格式进行标注,标注的数据的类别有烟雾和火焰两种,比赛、毕设不可错过的必要数据集。提供的下载方式为百度网盘,下载文件中有下载的链接地址,请放心下载。 自采集和搜集整理的烟雾和火灾数据集,数据集包括2w+图片,所有图片均采用VOC格式进行标注,标注的数据的类别有烟雾和火焰两种,比赛、毕设不可错过的必要数据集。 自采集和搜集整理的烟雾和火灾数据集,数据集包括2w+图片,所有图片均采用VOC格式进行标注,标注的数据的类别有烟雾和火焰两种,比赛、毕设不可错过的必要数据集。 自采集和搜集整理的烟雾和火灾数据集,数据集包括2w+图片,所有图片均采用VOC格式进行标注,标注的数据的类别有烟雾和火焰两种,比赛、毕设不可错过的必要数据集。 自采集和搜集整理的烟雾和火灾数据集,数据集包括2w+图片,所有图片均采用VOC格式进行标注,标注的数据的类别有烟雾和火焰两种,比赛、毕设不可错过的必要数据集。

2022-06-02

Labelimg中文版

官方的labelimg是英文版的界面,我这里通过修改字体包,将界面修改成了中文版,大家可以下载直接使用,再也不用担心英文的困扰了!LabelImg 是一个可视化的图像标定工具。Faster R-CNN,YOLO,SSD等目标检测网络所需要的数据集,均需要借此工具标定图像中的目标。生成的 XML 文件是遵循 PASCAL VOC 的格式的。 官方的labelimg是英文版的界面,我这里通过修改字体包,将界面修改成了中文版,大家可以下载直接使用,再也不用担心英文的困扰了!LabelImg 是一个可视化的图像标定工具。Faster R-CNN,YOLO,SSD等目标检测网络所需要的数据集,均需要借此工具标定图像中的目标。生成的 XML 文件是遵循 PASCAL VOC 的格式的。 官方的labelimg是英文版的界面,我这里通过修改字体包,将界面修改成了中文版,大家可以下载直接使用,再也不用担心英文的困扰了!LabelImg 是一个可视化的图像标定工具。Faster R-CNN,YOLO,SSD等目标检测网络所需要的数据集,均需要借此工具标定图像中的目标。生成的 XML 文件是遵循 PASC

2022-05-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除