打了这么久还是div2, 不过还是决定以后把每场比赛的想法记录下来。
这场div2应该算是逗逗的了(PS:div2 还有不逗的?)。
A题
题目大意: n组(a[i],b[i])。所有a[i]都是不同的数, 所有b[i]都是不同的数, 如果存在(a[i], b[i]), (a[j], b[j]), 满足a[i] < a[j], b[i] > b[j],则输出Happy Alex, 否则输出Poor Alex. N <= 100,000
思路:一眼题。以a[i]为关键字排序,如果b数组是递增的,就不存在上诉情况。如果存在b[i] > b[i + 1],则输出Happy Alex,否则输出Poor Alex.
(PS: 网速问题这题写好点submit 等了5分钟,苦瞎)
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
struct Node {
int a, b;
}v[111111];
bool cmp(Node a, Node b) {
return a.a < b.a;
}
int main() {
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d%d", &v[i].a, &v[i].b);
sort(v, v + n, cmp);
for(int i = 0; i < n - 1; i++) {
if(v[i].b > v[i + 1].b) {
puts("Happy Alex");
return 0;
}
}
puts("Poor Alex");
}
题目大意: (1^n + 2^n + 3^n + 4^n) mod 5 的值为多少, n是一个100000位以内的数。
思路:作为笨笨的我,把2^n, 3^n, 4^n mod 5 的周期都找了出来,周期为4, 并且当n % 4 == 0 时, 答案为 4, 否则为0。然后就是一个简单的高精除单精。
(看这题前先想了一会儿C,所以半个小时才出。 这题在房间随手一点看到一个用long long的小哥, 嘿嘿)
代码:
#include <cstdio>
#include <cstring>
using namespace std;
char str[111111];
int ans;
int calc() {
int temp = 0;
int len = strlen(str);
for(int i = 0; i < len; i++) {
temp = temp * 10 + str[i] - '0';
temp = temp % 4;
}
return temp;
}
int main() {
scanf("%s", str);
int tmp = calc();
if(tmp == 1) ans = 0;
if(tmp == 2) ans = 0;
if(tmp == 3) ans = 0;
if(tmp == 0) ans = 4;
printf("%d\n", ans);
}
C题:
题目大意: 包含n个数字的数列a, 每次选择一个数a[i]删除,同时所有的a[i] - 1, a[i] + 1,将被删除,得到a[i]分。问最多能得到多少分。n <= 100,000, 1 <= a <= 100,000
思路:果断dp, 将a[i] unique到b[i], 并且统计每个数出现的次数, 并且以b[i]为关键字排序。dp[i]表示前i个数中选择了所有b[i]的最大得分。
1.如果 b[i] - b[i - 1] > 1, 则b[i] 和b[i - 1]都可以选, dp[i] = dp[i - 1] + b[i] * num[i];
2.如果 b[i] - b[i - 1] == 1, 则b[i] 和b[i - 1] 只能选一种, dp[i] = max(dp[i - 1], dp[i - 2] + b[i] * num[i]);
注意边界下标不要跃界,注意值超过int。
(在35分钟左右就已经出了C, 结果代码有个小地方逗逗的没转long long, 1个半小时被人HACK, 少了200多分苦瞎)
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
long long a[111111];
long long b[111111];
long long num[111111];
long long f[111111];
int n, m;
int main() {
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%I64d", &a[i]);
sort(a, a + n);
b[m++] = a[0];
num[0] = 1;
for(int i = 1; i < n; i++) {
if(a[i] == b[m - 1]){
num[m - 1]++;
}
else {
b[m++] = a[i];
num[m - 1] = 1;
}
}
f[0] = b[0] * num[0];
for(int i = 1; i < m; i++) {
if(b[i] - b[i - 1] > 1) {
f[i] = f[i - 1] + b[i] * num[i];
}
else {
if(i > 1) f[i] = max(f[i - 1], num[i] * b[i] + f[i - 2]);
else f[i] = max(f[i - 1], num[i] * b[i]);
}
}
long long ans = 0;
for(int i = 0; i < m; i++) ans = max(ans, f[i]);
cout << ans << endl;
return 0;
}
题目大意:两个人玩一个游戏,给出n个字符串, 有一个空字符串, 每次两个人轮流在这个空字符串后面添加一个字母,要保证这个字符串是给出的n个字符串的某一个字符串的前缀。不能进行下一步的人就算是输了。输了的人第二局要先手。现在两个人要玩K次这个游戏,赢得最后一局的人就算赢,两个人都很聪明。 问是先手能赢还是后手能赢。n个字符串总共的字符数不超过100,000, 且都为小写字母。
思路:首先对于一局游戏,
1.如果先手能赢, 也能输,那么先手可以前K - 1局一直输,然后在第k 局先手赢。
2.如果先手能赢,不能输,那么k为奇数时,先手赢。否则后手赢。
3.如果先手能输, 不能赢, 那么后手可以一直赢。
4,如果先手不能赢, 也不能输, 那么后手可以一直赢。
这里的能赢和能输是指在想赢的情况下就可以赢,想输的情况下就可以输。
那么怎么求出对于一次游戏的状态呢。
可以用n个字符串建立字母树,在树上DP, root就是先手的状态。
win[i] 表示节点i对应状态想赢就一定能赢。
lose[i]表示节点i对应状态想输就一定能输。
对于当前节点,如果子节点有一个是win == 0, 那么当前节点win == 1。如果子节点都是win == 1, 那么当前节点win == 0。
如果子节点有一个是lose == 0, 那么当前节点lose == 1。如果子节点都是lose == 1, 那么当前节点lose == 0。
对于所有的叶子节点win == 0, lose == 1
代码:
#include <cstdio>
#include <cstring>
using namespace std;
struct Node{
Node* son[26];
int id;
} stack[111111];
int tail = 0;
int win[111111];
int lose[111111];
struct Trie {
Node* root;
Trie () {
root = &stack[tail++];
root -> id = tail - 1;
}
void insert(char* p) {
Node* now = root;
while(*p != 0) {
if(now -> son[*p - 'a'] == NULL) {
now -> son[*p - 'a'] = &stack[tail++];
now -> son[*p - 'a'] -> id = tail - 1;
}
now = now -> son[*p - 'a'];
p++;
}
}
};
char str[111111];
Trie T;
int n, m;
void OK(Node *p) {
int flag = 0;
int k = p -> id;
win[k] = 0;
lose[k] = 0;
for(int i = 0; i < 26; i++) {
if(p -> son[i] != NULL) {
flag = 1;
OK(p -> son[i]);
}
if(p -> son[i] != NULL && win[p -> son[i] -> id] == 0) win[k] = 1;
if(p -> son[i] != NULL && lose[p -> son[i] -> id] == 0) lose[k] = 1;
}
if(!flag) lose[k] = 1;
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++) {
scanf("%s", str);
T.insert(str);
}
OK(T.root);
if (win[0] && lose[0]){
puts("First");
} else {
if (win[0]){
if (m&1){
puts("First");
} else {
puts("Second");
}
} else {
puts("Second");
}
}
return 0;
}
E题还没来得及看题目,等我写出来了再来更新这篇博文。