复杂度nlog(n)之归并排序

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014316462/article/details/52003626

1.简单的介绍

平均时间复杂度 最好时间复杂度 最坏时间复杂度 空间复杂度
nlog(n) nlog(n) nlog(n) O(1)

2.核心的merge函数

/**
     * 将分割开的两个数组合并,[start,middle]和[middle+1,end]这两个数组合并成为一个新的排序数组
     * @param array
     * @param start
     * @param middle
     * @param end
     */
    public static void merge(int[] array,int start,int middle,int end)
    {
        int [] temp=new int[end-start+1];
        int k=0;
        int start1=start;
        int end1=middle;
        int start2=middle+1;
        int end2=end;
        while(start1<=end1&&start2<=end2)
        {
            if(array[start1]<=array[start2])
            {
                temp[k++]=array[start1++];
            }else
            {
                temp[k++]=array[start2++];
            }
        }
        while(start1<=end1)
        {
            temp[k++]=array[start1++];
        }
        while(start2<=end2)
        {
            temp[k++]=array[start2++];
        }
        for(int i=0;i<k;i++)
        {
            array[start+i]=temp[i];
        }
    }

上面函数就是数组被递归分割后的两个数组,将他们重新拼成一个排序数组。

3.完整的代码

    public static void mergesort(int[] array,int start,int end)
    {
        if(start<end)
        {
            int middle=(start+end)/2;
            mergesort(array, start, middle);
            mergesort(array, middle+1, end);
            merge(array, start, middle, end);
        }
    }

归并算法大致就是利用不停地递归不停地将数组一分为二,知道他们被分成一个一个的。然后再回溯不停地合并,最终将他们变成一个排序数组。

展开阅读全文

没有更多推荐了,返回首页