基本定义:
一般地,把形如
y=ax2+bx+c(其中a、b、c是
常数,a≠0,b,c可以为0)的
函数叫做二次函数(quadratic
function),其中a称为
二次项系数,b为
一次项系数,c为
常数项。x为
自变量,y为因
变量。
等号右边自变量的最高次数是2。
二次函数图像是
轴对称图形。
对称轴为直线
[1],
顶点坐标
,
交点式为
(
仅限于与x轴有交点和的抛物线),
与x轴的交点坐标是
和
。





注意:“
变量”不同于“
自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“
未知数”只是一个数(具体值未知,但是只取一个值),“
变量”可在实数范围内任意取值。在
方程中适用“未知数”的概念(
函数方程、
微分方程中是未知函数,但不论是未知数还是未知函数,
一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。
[2-3]
函数性质:
1.二次函数是
抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形,不是中心对称图形。
对称轴为直线
。对称轴与抛物线唯一的交点为
抛物线的顶点P。特别地,当b=0时,抛物线的
对称轴是y轴(即直线x=0)。

2.抛物线有一个顶点P,坐标为P
。当
时,P在y轴上;当
时,P在x轴上。



3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
|a|越小,则抛物线的开口越大。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c
6.抛物线与x轴交点个数:
时,抛物线与x轴有2个交点。
时,抛物线与x轴有1个交点。当
时,抛物线与x轴没有交点。



当
时,函数在
处取得最小值
;在
上是减函数,在



