题目链接:点这里!!!!
题意:给你一个n*n(n<=1000)的矩阵,值为0、1、2、3。让你找一个十字架(边长长度不固定)例如:
**o** **o** ooooo **o** **o**
or
o***o *o*o* **o** *o*o* o***o这两种形式,四边的边长必须相等,问他们的乘积最大为多少,并对1000 000 007取模。
题解:
n^3的暴力,枚举每个点,它为十字架的中点且枚举他的8个方向,就可以求出答案。当时时间不允许,所以我们要dp一下。
假设当前点为(x,y)它可以从(x,y-1),(x-1,y-1),(x-1,y),(x-1,y+1),(x,y+1),(x+1,y+1),(x+1,y),(x+1,y-1)继承过来。可以求出8个方向的最长边。分成两种情况然后取相应的最小边,分割成相等长度的十字架,就可以得到答案,注意我们这里记录的是2、3的个数,然后用log比较大小就可以了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<vector>
#include<bitset>
#include<set>
#include<queue>
#include<stack>
#include<map>
#include<cstdlib>
#include<cmath>
#define LL long long
#define pb push_back
#define pa pair<int,int>
#define clr(a,b) memset(a,b,sizeof(a))
#define lson lr<<1,l,mid
#define rson lr<<1|1,mid+1,r
#define bug(x) printf("%d++++++++++++++++++++%d\n",x,x)
#define key_value ch[ch[root][1]][0]
#pragma comment(linker, "/STACK:102400000000,102400000000")
const LL MOD = 1000000007;
const int N = 1e3+15;
const int maxn = 8e3+15;
const int letter = 130;
const LL INF = 1e18;
const double pi=acos(-1.0);
const double eps=1e-10;
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,mp[N][N];
int dir[8][2]={{0,-1},{-1,-1},{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1}};
struct node{
int num[4],len;
}dp[N][N][8];
bool ok(int x,int y){
return x>=0&&x<n&&y>=0&&y<n;
}
double pval(int x,int y){
return 1.0*x*log(2)+1.0*y*log(3);
}
int main(){
scanf("%d",&n);
char s[N];
for(int i=0;i<n;i++){
scanf("%s",s);
for(int j=0;j<n;j++) mp[i][j]=s[j]-'0';
}
int x,y;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
if(mp[i][j]==0) continue;
for(int k=0;k<4;k++){
x=i+dir[k][0],y=j+dir[k][1];
dp[i][j][k].len=1;
if(mp[i][j]==2||mp[i][j]==3) dp[i][j][k].num[mp[i][j]]++;
if(!ok(x,y)||!mp[x][y]) continue;
else {
for(int p=0;p<4;p++){
dp[i][j][k].num[p]+=dp[x][y][k].num[p];
}
}
dp[i][j][k].len+=dp[x][y][k].len;
}
}
for(int i=n-1;i>=0;i--)
for(int j=n-1;j>=0;j--){
if(mp[i][j]==0) continue;
for(int k=4;k<8;k++){
x=i+dir[k][0],y=j+dir[k][1];
dp[i][j][k].len=1;
if(mp[i][j]==2||mp[i][j]==3) dp[i][j][k].num[mp[i][j]]++;
if(!ok(x,y)||!mp[x][y]) continue;
else {
for(int p=2;p<=3;p++){
dp[i][j][k].num[p]+=dp[x][y][k].num[p];
}
}
dp[i][j][k].len+=dp[x][y][k].len;
}
}
/*
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
for(int k=0;k<8;k++){
printf("%d %d %d %d %d %d\n",i,j,k,dp[i][j][k].len,dp[i][j][k].num[2],dp[i][j][k].num[3]);
}
}*/
int max2=0,max3=0,maxv=0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
if(mp[i][j]==0) continue;
maxv=max(maxv,mp[i][j]);
int minlen=100000;
for(int k=0;k<8;k+=2){
minlen=min(minlen,dp[i][j][k].len);
}
int n2=0,n3=0;
for(int k=0;k<8;k+=2){
int x=i+minlen*dir[k][0],y=j+minlen*dir[k][1];
if(!ok(x,y)){
n2+=dp[i][j][k].num[2];
n3+=dp[i][j][k].num[3];
}
else {
n2+=dp[i][j][k].num[2]-dp[x][y][k].num[2];
n3+=dp[i][j][k].num[3]-dp[x][y][k].num[3];
}
}
if(mp[i][j]==2) n2-=3;
if(mp[i][j]==3) n3-=3;
if(pval(n2,n3)>pval(max2,max3)) max2=n2,max3=n3;
minlen=1000000;
for(int k=1;k<8;k+=2){
minlen=min(minlen,dp[i][j][k].len);
}
n2=0,n3=0;
for(int k=1;k<8;k+=2){
int x=i+minlen*dir[k][0],y=j+minlen*dir[k][1];
if(!ok(x,y)){
n2+=dp[i][j][k].num[2];
n3+=dp[i][j][k].num[3];
}
else {
n2+=dp[i][j][k].num[2]-dp[x][y][k].num[2];
n3+=dp[i][j][k].num[3]-dp[x][y][k].num[3];
}
}
if(mp[i][j]==2) n2-=3;
if(mp[i][j]==3) n3-=3;
if(pval(n2,n3)>pval(max2,max3)) max2=n2,max3=n3;
}
if(max2+max3==0) printf("%d\n",maxv);
else {
LL vs=1;
for(int i=1;i<=max2;i++){
vs=(1ll*vs*2)%MOD;
}
for(int i=1;i<=max3;i++){
vs=(1ll*vs*3)%MOD;
}
printf("%I64d\n",vs);
}
return 0;
}
/*
4
1233
0213
2020
0303
5
00200
00200
03330
00200
00000
*/