2016计蒜之道 复赛 A. 百度地图的实时路况(cdq分治+floyd)

题目链接:点这里!!!!


题意:中文题


官方题解:

枚举 d(x , y , z)d(x,y,z) 中的 yy,把 yy 从这个图中删去,再求这时的全源最短路即可,使用 Floyd 算法来做上述过程。Floyd 算法可以是一个增量的过程,虽然第一维一般都是从 11 枚举到 kk 但是这个枚举的顺序并不影响最后的结果。所以如果可以预处理出对于每个点 yy 只剩 yy 没有在 Floyd 的第一维枚举到的矩阵,这个矩阵的值就是不经过 yy 点的全源最短路。

所以使用分治,每一次把点集拆成两半,先用前一半的点在 Floyd 算法中滚,再递归后一半点。然后回溯,用后一半的点在 Floyd 算法里滚,递归前一半的点。这样每个只有一个点的状态得到的就是只有这个点没有在 Floyd 算法里滚的矩阵。

时间复杂度为 O(n^3 \log n)O(n3logn)

分治的是k.

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<vector>
#include<bitset>
#include<set>
#include<queue>
#include<stack>
#include<map>
#include<cstdlib>
#include<cmath>
#define LL long long
#define pb push_back
#define pa pair<int,int>
#define clr(a,b) memset(a,b,sizeof(a))
#define lson lr<<1,l,mid
#define rson lr<<1|1,mid+1,r
#define bug(x) printf("%d++++++++++++++++++++%d\n",x,x)
#define key_value ch[ch[root][1]][0]
#pragma comment(linker, "/STACK:102400000000,102400000000")
const LL  MOD = 1000000007;
const int N = 300+15;
const int maxn = 8e3+15;
const int letter = 130;
const LL INF = 1e7;
const double pi=acos(-1.0);
const double eps=1e-10;
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n;
LL dp[10][N][N],ans=0;
void cdq(int L,int R,int dep){
    if(L==R){
        for(int i=1;i<=n;i++){
            if(i==L) continue;
            for(int j=1;j<=n;j++){
                if(j==L) continue;
                ans+=(dp[dep-1][i][j]>=INF?-1:dp[dep-1][i][j]);
            }
        }
        return;
    }
    int mid=(L+R)>>1;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
        dp[dep][i][j]=dp[dep-1][i][j];
    for(int k=L;k<=mid;k++){
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++){
            dp[dep][i][j]=min(dp[dep][i][j],dp[dep][i][k]+dp[dep][k][j]);
        }
    }
    cdq(mid+1,R,dep+1);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++){
        dp[dep][i][j]=dp[dep-1][i][j];
    }
    for(int k=mid+1;k<=R;k++){
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++){
            dp[dep][i][j]=min(dp[dep][i][j],dp[dep][i][k]+dp[dep][k][j]);
        }
    }
    cdq(L,mid,dep+1);
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++){
        scanf("%lld",&dp[0][i][j]);
        if(dp[0][i][j]==-1)dp[0][i][j]=INF;
    }
    cdq(1,n,1);
    printf("%lld\n",ans);
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值