题目链接:点这里!!!!
题意:中文题
官方题解:
枚举 d(x,y,z) 中的 y,把 y 从这个图中删去,再求这时的全源最短路即可,使用 Floyd 算法来做上述过程。Floyd 算法可以是一个增量的过程,虽然第一维一般都是从 1 枚举到 k 但是这个枚举的顺序并不影响最后的结果。所以如果可以预处理出对于每个点 y 只剩 y 没有在 Floyd 的第一维枚举到的矩阵,这个矩阵的值就是不经过 y 点的全源最短路。
所以使用分治,每一次把点集拆成两半,先用前一半的点在 Floyd 算法中滚,再递归后一半点。然后回溯,用后一半的点在 Floyd 算法里滚,递归前一半的点。这样每个只有一个点的状态得到的就是只有这个点没有在 Floyd 算法里滚的矩阵。
时间复杂度为 O(n3logn)。
分治的是k.
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<vector>
#include<bitset>
#include<set>
#include<queue>
#include<stack>
#include<map>
#include<cstdlib>
#include<cmath>
#define LL long long
#define pb push_back
#define pa pair<int,int>
#define clr(a,b) memset(a,b,sizeof(a))
#define lson lr<<1,l,mid
#define rson lr<<1|1,mid+1,r
#define bug(x) printf("%d++++++++++++++++++++%d\n",x,x)
#define key_value ch[ch[root][1]][0]
#pragma comment(linker, "/STACK:102400000000,102400000000")
const LL MOD = 1000000007;
const int N = 300+15;
const int maxn = 8e3+15;
const int letter = 130;
const LL INF = 1e7;
const double pi=acos(-1.0);
const double eps=1e-10;
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n;
LL dp[10][N][N],ans=0;
void cdq(int L,int R,int dep){
if(L==R){
for(int i=1;i<=n;i++){
if(i==L) continue;
for(int j=1;j<=n;j++){
if(j==L) continue;
ans+=(dp[dep-1][i][j]>=INF?-1:dp[dep-1][i][j]);
}
}
return;
}
int mid=(L+R)>>1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dp[dep][i][j]=dp[dep-1][i][j];
for(int k=L;k<=mid;k++){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
dp[dep][i][j]=min(dp[dep][i][j],dp[dep][i][k]+dp[dep][k][j]);
}
}
cdq(mid+1,R,dep+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
dp[dep][i][j]=dp[dep-1][i][j];
}
for(int k=mid+1;k<=R;k++){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
dp[dep][i][j]=min(dp[dep][i][j],dp[dep][i][k]+dp[dep][k][j]);
}
}
cdq(L,mid,dep+1);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%lld",&dp[0][i][j]);
if(dp[0][i][j]==-1)dp[0][i][j]=INF;
}
cdq(1,n,1);
printf("%lld\n",ans);
return 0;
}