《光照不均匀图像的灰度波动局部阈值分割》opencv编码实现

本文介绍了针对光照不均匀图像的灰度波动局部阈值分割方法,通过opencv实现。虽然该方法对光照问题有效,但对阴影遮挡和局部高光的场景可能不适用。文中提供了流程图和关键代码片段,强调阈值选择和波动阈值系数的重要性,以及参数调整的灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于论文

最近遇到了需要处理图像上光照不均匀的问题,参考了论文《光照不均匀图像的灰度波动局部阈值分割》的方法,很感谢作者提供的思路,觉得它的效果很好,对图像的分析也比较到位。

各种算法实验结果对比

实际尝试以后发现这种方法适用于整个范围上的光照不均匀,我们遇到的问题还有阴影遮挡、局部高光等,因此暂时用不上这段编码了,贴在这里供大家参考。关于论文请戳链接


分析与opencv实现

  • 因为纵向的处理只要将源图像Mat转置输入函数,再转置一次就能得到结果,这里只写了横向实现
  • 对于不同方向、峰和谷的搜索只使用一个函数添加参数组合实现
  • 方法中比较依赖阈值T、和波动阈值系数的取值,使用需要反复对这两个值调节

关于第三点分析,摘取部分原文中的说明:

对于阈值 T 的选取,理论上是依据整幅图像中所有灰度波动曲线的最大灰度值和最小灰度值之间的差值来确定……对阈值 T 的准确选择,还可以借助神经网络的方法对特定类别的图像进行训练,从而获得阈值 T ……

然而,浮动参数的选择是为了更加灵活地控制目标分割宽度的程度……

流程图

代码的设计思路:

Created with Raphaël 2.1.0 源图像的某一行 查找所有极值点
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值