两次登上Github全球趋势榜,覆盖工业制造、安防巡检、能源电力、卫星遥感、智能交通等十多个行业的AI应用场景!借助这个项目,不需要你有深厚的数学基础,不需要你是算法大牛,只要你会用Python就可以快速开发AI算法,实现产业智能化升级的想法。AI学习路程不必再“从入门到放弃”、“从理论到躺平”啦!
传送门:
https://github.com/PaddlePaddle/PaddleX
着急的小伙伴可以直接去看项目详情,Star收藏一下。
说的这么神,这到底是个什么项目,到底有什么过人之处,又具体能做些什么呢?小编下面就展开来给大家详细介绍一下。
1能做什么?
●工业领域:
a. 瑕疵检测:包括3C电子,汽车制造,制药,钢铁焊接,甚至公路、铁轨的缺陷检测及维护
b. 智能抓取:自动分拣、产线上下料、钢材等重型产品搬运等
c. 产品计数:电子产品、零件或者钢筋等任何产品的检测计数
●安防巡检领域:
a. 人员安全检测:行人检测、安全帽衣着检测、口罩佩戴检测等
b. 环境安全检测:火情检测、车辆检测、异常喷洒物料检测等
c. 设备维护检测:表计检测及读数、输电线路及基站本体异物检测、设备监控等
● 智慧城市领域:
a. 卫星遥感图像识别:建筑物、农作物、道路等检测、分割及变化检测及面积计算等
b. 车辆、行人、交通标示检测及计数等
● 智慧零售:商品检测、商标检测及计数
● 智慧医疗领域:CT影像分割、肺炎筛查、眼底病变筛查等
还有很多诸如预测性维护、3D仿真系统的监控、电力及物流自动调度及排程优化等应用,深度学习都发挥着极大的作用,欢迎各位大神们一同拓展,为产业智能化升级献计献策~
2怎么用?
● pip install一键安装, 4个API即可完成深度学习算法训练!
● 一站式开发:
从数据预处理、超参配置、模型训练与评估、模型多端部署等深度学习产业项目开发全流程全面覆盖。
● 亲妈级指南:
针对每一落地细节提供了详细的从数据标注、数据预处理,到单模型训练、调优,到多模型串联,最后到多端部署、推理加速、可视化结果呈现等全流程、详细、完善的操作指南,以及基于产业真实场景的示例工程。
● 多硬件、多环境快速部署:
PaddleX Deployment模块,得益于Paddle Inference和Paddle Lite的能力,适配业界常用的CPU、GPU(包括NVIDIA Jetson)、树莓派等硬件,支持用户采用OpenVINO或TensorRT进行推理加速。完备支持工业最常使用的Windows系统,且提供C#语言进行部署的方式。与此同时,PaddleX Deployment模块不仅支持PaddleX原生训练模型的部署,还支持对PaddleDetection,PaddleSeg,PaddleClas等视觉套件的模型进行快速部署!
● 独特的PaddleX Manufacture SDK
不会编译预测库?需要多个算法串联?PaddleX ManufactureSDK提供工业级多端多平台部署加速的预编译飞桨部署开发套件(SDK),通过修改业务逻辑配置文件,就可以快速完成推理部署。覆盖单个算法以及多个算法串联形式。极低代码,极高效率。
3开挂玩法
除了以上通用的使用方法和模块,PaddleX还拥有一些独特的开挂玩法!
● RESTful API:可以用来直接搭建AI开发平台及服务!不论你将训练框架部署在哪里, 只需要启动RESTful API服务,即可在本地调起开发界面调动远程服务器的资源进行训练。从此公司的算法工程师都用救世主的眼神看我⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄
● 模型加密:即使你的模型被拷贝,没有密钥也无法被非法使用,简直产业救星!
4 来自于社区的认可
● 飞桨社区开发者还基于PaddleX开源贡献了PaddleX图形化开发界面GUI以及适用于Windows系统部署的“工业相机实时目标检测GUI”。图形化开发模式,部署后可直接调用一个或多个相机,直接可视化检测结果!!!
● 神州数码代理发售的英特尔®️NUC硬件上,还预装了PaddleX!并经过完善测试,获得了产品兼容性证明。被Intel和神州数码认可的产品,你说能差吗?!
拥有这样牛气的神器,仿佛坐拥几十个亿!!!
不论你是AI算法开发者、软件系统工程师、硬件工程师还是学生, 都可以应用PaddleX提供的深度学习算法快速进行模型开发,并在实际的硬件、系统上部署上线。
还不Star等什么?这么优秀的项目不值得支持一下嘛?
项目链接:
https://github.com/PaddlePaddle/PaddleX
如果希望深入和业界开发者深入交流,或者获得PaddleX官方团队支持的小伙伴,可以扫码报名直播课加入官方技术交流群上车!!!
扫描二维码报名,立即加入技术交流群
精彩课程抢先看
6.28-30日每晚 8:15-9:30 百度高工将为我们带来直击深度学习产业应用落地的精彩直播课,小伙伴们快戳二维码抢座,我们直播间不见不散~~
如果您想详细了解更多飞桨的相关内容,请参阅以下文档。
官网地址:
https://www.paddlepaddle.org.cn
PaddleX官网主页:
https://www.paddlepaddle.org.cn/paddle/paddleX
飞桨开源框架项目地址:
GitHub:
https://github.com/PaddlePaddle/Paddle
Gitee:
https://gitee.com/paddlepaddle/Paddle