真正面向 AI 行业应用场景的开源项目来了!

两次登上Github全球趋势榜,覆盖工业制造、安防巡检、能源电力、卫星遥感、智能交通等十多个行业的AI应用场景!借助这个项目,不需要你有深厚的数学基础,不需要你是算法大牛,只要你会用Python就可以快速开发AI算法,实现产业智能化升级的想法。AI学习路程不必再“从入门到放弃”、“从理论到躺平”啦!


传送门:

https://github.com/PaddlePaddle/PaddleX

着急的小伙伴可以直接去看项目详情,Star收藏一下。

说的这么神,这到底是个什么项目,到底有什么过人之处,又具体能做些什么呢?小编下面就展开来给大家详细介绍一下。

1能做什么?

●工业领域:

a.    瑕疵检测:包括3C电子,汽车制造,制药,钢铁焊接,甚至公路、铁轨的缺陷检测及维护

b.    智能抓取:自动分拣、产线上下料、钢材等重型产品搬运等

c.    产品计数:电子产品、零件或者钢筋等任何产品的检测计数

●安防巡检领域:

a.    人员安全检测:行人检测、安全帽衣着检测、口罩佩戴检测等

b.    环境安全检测:火情检测、车辆检测、异常喷洒物料检测等

c.    设备维护检测:表计检测及读数、输电线路及基站本体异物检测、设备监控等

● 智慧城市领域:

a.    卫星遥感图像识别:建筑物、农作物、道路等检测、分割及变化检测及面积计算等

b.    车辆、行人、交通标示检测及计数等

● 智慧零售:商品检测、商标检测及计数

● 智慧医疗领域:CT影像分割、肺炎筛查、眼底病变筛查等

还有很多诸如预测性维护、3D仿真系统的监控、电力及物流自动调度及排程优化等应用,深度学习都发挥着极大的作用,欢迎各位大神们一同拓展,为产业智能化升级献计献策~

2怎么用?

pip install一键安装, 4个API即可完成深度学习算法训练!

  一站式开发

从数据预处理、超参配置、模型训练与评估、模型多端部署等深度学习产业项目开发全流程全面覆盖。

  亲妈级指南:

针对每一落地细节提供了详细的从数据标注、数据预处理,到单模型训练、调优,到多模型串联,最后到多端部署、推理加速、可视化结果呈现等全流程、详细、完善的操作指南,以及基于产业真实场景的示例工程。

   

  多硬件、多环境快速部署:

PaddleX Deployment模块,得益于Paddle Inference和Paddle Lite的能力,适配业界常用的CPU、GPU(包括NVIDIA Jetson)、树莓派等硬件,支持用户采用OpenVINO或TensorRT进行推理加速。完备支持工业最常使用的Windows系统,且提供C#语言进行部署的方式。与此同时,PaddleX Deployment模块不仅支持PaddleX原生训练模型的部署,还支持对PaddleDetection,PaddleSeg,PaddleClas等视觉套件的模型进行快速部署!

  独特的PaddleX Manufacture SDK

不会编译预测库?需要多个算法串联?PaddleX ManufactureSDK提供工业级多端多平台部署加速的预编译飞桨部署开发套件(SDK),通过修改业务逻辑配置文件,就可以快速完成推理部署。覆盖单个算法以及多个算法串联形式。极低代码,极高效率。                                                                                   

3开挂玩法

除了以上通用的使用方法和模块,PaddleX还拥有一些独特的开挂玩法!

  RESTful API:可以用来直接搭建AI开发平台及服务!不论你将训练框架部署在哪里, 只需要启动RESTful API服务,即可在本地调起开发界面调动远程服务器的资源进行训练。从此公司的算法工程师都用救世主的眼神看我⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄

 

  模型加密:即使你的模型被拷贝,没有密钥也无法被非法使用,简直产业救星!

 

4 来自于社区的认可

  飞桨社区开发者还基于PaddleX开源贡献了PaddleX图形化开发界面GUI以及适用于Windows系统部署的“工业相机实时目标检测GUI”。图形化开发模式,部署后可直接调用一个或多个相机,直接可视化检测结果!!!

  神州数码代理发售的英特尔®️NUC硬件上,还预装了PaddleX!并经过完善测试,获得了产品兼容性证明。被Intel和神州数码认可的产品,你说能差吗?!

拥有这样牛气的神器,仿佛坐拥几十个亿!!!

 

不论你是AI算法开发者、软件系统工程师、硬件工程师还是学生, 都可以应用PaddleX提供的深度学习算法快速进行模型开发,并在实际的硬件、系统上部署上线。

 

还不Star等什么?这么优秀的项目不值得支持一下嘛?

项目链接:

https://github.com/PaddlePaddle/PaddleX

如果希望深入和业界开发者深入交流,或者获得PaddleX官方团队支持的小伙伴,可以扫码报名直播课加入官方技术交流群上车!!!

扫描二维码报名,立即加入技术交流群

精彩课程抢先看

6.28-30日每晚 8:15-9:30 百度高工将为我们带来直击深度学习产业应用落地的精彩直播课,小伙伴们快戳二维码抢座,我们直播间不见不散~~

如果您想详细了解更多飞桨的相关内容,请参阅以下文档。

官网地址:

https://www.paddlepaddle.org.cn

PaddleX官网主页:

https://www.paddlepaddle.org.cn/paddle/paddleX

 

飞桨开源框架项目地址:

GitHub:

https://github.com/PaddlePaddle/Paddle

Gitee:  

https://gitee.com/paddlepaddle/Paddle

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值