多级反馈队列 Multi-level Feedback Queue MLFQ

多级反馈队列 Multi-level Feedback Queue MLFQ

MLFQ中有许多独立的队列(queue),每个队列有不同的优先级(prioritylevel)。任何时刻,一个工作只能存在于一个队列中。MLFQ总是优先执行较高优先级的工作(即在较高级队列中的工作)

如果一个进程是交互型任务,比如键盘输入,MLFQ会让他保持高优先级。如果一个工作长时间占用CPU,MLFQ会将它挪动到低优先级队列。

MLFQ规则

  • 规则1: 如果A的优先级 > B的优先级, 运行A(不运行B)。
  • 规则2: 如果A的优先级 = B的优先级,轮转运行A和B。
  • 规则3: 工作进入系统时,放在最高优先级(最上层队列)。
  • 规则4: 一旦工作用完了其在某一层中的时间配额(无论中间主动放弃了多少次CPU),将降低其优先级(移入低一级队列)。
  • 规则5: 经过一段时间S后,就将系统中所有工作重新加入最高优先级队列。

其中规则3是为了保证新加入的任务能首次获得CPU的执行权。
规则4 是为了防止有些任务故意释放CPU,然后系统保持它的优先级。
规则5是为了避免某些IO交互任务长时间频繁得到CPU,长工作永远得不到CPU。另外如果一个计算密集型的任务在某段时间表现为一个交互性的任务,它不会享受到系统中其他交互性任务的待遇。

优化

有解决的问题:

  1. 配置多少队列?
  2. 每一层队列的时间片配置多大?
  3. 为了避免饥饿问题以及进程行为改变,应该多久提升一次进程的优先级?

大多数MLFQ变体支持:

  • 高优先级队列配置较短的时间片,比如10ms或者更少
  • 低优先级配置更长的时间片。
  • 通过配置,数学公式来调整优先级。比如linux 系统中nice工具
内容概要:本文《2025年全球AI Coding市场洞察研究报告》由亿欧智库发布,深入分析了AI编程工具的市场现状和发展趋势。报告指出,AI编程工具在2024年进入爆发式增长阶段,成为软件开发领域的重要趋势。AI编程工具不仅简化了代码生成、调试到项目构建等环节,还推动编程方式从人工编码向“人机协同”模式转变。报告详细评估了主流AI编程工具的表现,探讨了其商业模式、市场潜力及未来发展方向。特别提到AI Agent技术的发展,使得AI编程工具从辅助型向自主型跃迁,提升了任务执行的智能化和全面性。报告还分析了AI编程工具在不同行业和用户群体中的应用,强调了其在提高开发效率、减少重复工作和错误修复方面的显著效果。后,报告预测2025年AI编程工具将在精准化和垂直化上进一步深化,推动软件开发行业进入“人机共融”的新阶段。 适合人群:具备一定编程基础,尤其是对AI编程工具有兴趣的研发人员、企业开发团队及非技术人员。 使用场景及目标:①了解AI编程工具的市场现状和发展趋势;②评估主流AI编程工具的性能和应用场景;③探索AI编程工具在不同行业中的具体应用,如互联网、金融、游戏等;④掌握AI编程工具的商业模式和盈利空间,为企业决策提供参考。 其他说明:报告基于亿欧智库的专业研究和市场调研,提供了详尽的数据支持和前瞻性洞察。报告不仅适用于技术从业者,也适合企业管理者和政策制定者,帮助他们在技术和商业决策中更好地理解AI编程工具的价值和潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值