先上敏感词测试结果:代码下载地址:https://download.csdn.net/download/u014373554/12585051
测试:我在配置文件中设置傻瓜是敏感词。
GET 请求: 请求参数值带有傻瓜,返回则提示 参数包含敏感信息
再来测试一下POST 请求: 同样有提示包含敏感信息
一、对于输入的参数值,进行对敏感词进行过滤,需要支持GET和POST方法请求。 参考了https://blog.csdn.net/zlliuh/article/details/106740648
二、需要过滤词的工具类。参考了 Java快速中文敏感词过滤,在15k敏感词库上的过滤速度超过50M字符每秒。https://gitee.com/hongfeifly/sensitive-words/tree/master 该项目的方法。
三、将两个整合在一起实现了过滤敏感词。以下代码步骤;
- 1、拷贝 大神开源三个类的代码 SensitiveFilter 、SensitiveNode、StringPointer :
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.Serializable;
import java.nio.charset.StandardCharsets;
import java.util.Iterator;
import java.util.NavigableSet;
/**
* 敏感词过滤器,以过滤速度优化为主。<br/>
* * 增加一个敏感词:{@link #put(String)} <br/>
* * 过滤一个句子:{@link #filter(String, char)} <br/>
* * 获取默认的单例:{@link #DEFAULT}
*
*/
public class SensitiveFilter implements Serializable{
private static final long serialVersionUID = 1L;
/**
* 默认的单例,使用自带的敏感词库
* ClassLoader.getSystemResourceAsStream("sensi_words.txt") 部署Linux会获取流为空null
*/
/** public static final SensitiveFilter DEFAULT = new SensitiveFilter(
new BufferedReader(new InputStreamReader(
ClassLoader.getSystemResourceAsStream("sensi_words.txt")
, StandardCharsets.UTF_8))); */
/**
* 默认的单例,使用自带的敏感词库
*/
public static final SensitiveFilter DEFAULT = new SensitiveFilter(
new BufferedReader(new InputStreamReader(
Thread.currentThread().getContextClassLoader().getResourceAsStream("sensi_words.txt")
, StandardCharsets.UTF_8)));
/**
* 为2的n次方,考虑到敏感词大概在10k左右,
* 这个数量应为词数的数倍,使得桶很稀疏
* 提高不命中时hash指向null的概率,
* 加快访问速度。
*/
static final int DEFAULT_INITIAL_CAPACITY = 131072;
/**
* 类似HashMap的桶,比较稀疏。
* 使用2个字符的hash定位。
*/
protected SensitiveNode[] nodes = new SensitiveNode[DEFAULT_INITIAL_CAPACITY];
/**
* 构建一个空的filter
*
* @author ZhangXiaoye
* @date 2017年1月5日 下午4:18:07
*/
public SensitiveFilter(){
}
/**
* 加载一个文件中的词典,并构建filter<br/>
* 文件中,每行一个敏感词条<br/>
* <b>注意:</b>读取完成后会调用{@link BufferedReader#close()}方法。<br/>
* <b>注意:</b>读取中的{@link IOException}不会抛出
*
* @param reader
*/
public SensitiveFilter(BufferedReader reader){
try{
for(String line = reader.readLine(); line != null; line = reader.readLine()){
put(line);
}
reader.close();
}catch(IOException e){
e.printStackTrace();
}
}
/**
* 增加一个敏感词,如果词的长度(trim后)小于2,则丢弃<br/>
* 此方法(构建)并不是主要的性能优化点。
*
* @param word
*/
public boolean put(String word){
// 长度小于2的不加入
if(word == null || word.trim().length() < 2){
return false;
}
// 两个字符的不考虑
if(word.length() == 2 && word.matches("\\w\\w")){
return false;
}
StringPointer sp = new StringPointer(word.trim());
// 计算头两个字符的hash
int hash = sp.nextTwoCharHash(0);
// 计算头两个字符的mix表示(mix相同,两个字符相同)
int mix = sp.nextTwoCharMix(0);
// 转为在hash桶中的位置
int index = hash & (nodes.length - 1);
// 从桶里拿第一个节点
SensitiveNode node = nodes[index];
if(node == null){
// 如果没有节点,则放进去一个
node = new SensitiveNode(mix);
// 并添加词
node.words.add(sp);
// 放入桶里
nodes[index] = node;
}else{
// 如果已经有节点(1个或多个),找到正确的节点
for(;node != null; node = node.next){
// 匹配节点
if(node.headTwoCharMix == mix){
node.words.add(sp);
return true;
}
// 如果匹配到最后仍然不成功,则追加一个节点
if(node.next == null){
new SensitiveNode(mix, node).words.add(sp);
return true;
}
}
}
return true;
}
/**
* 对句子进行敏感词过滤<br/>
* 如果无敏感词返回输入的sentence对象,即可以用下面的方式判断是否有敏感词:<br/><code>
* String result = filter.filter(sentence, '*');<br/>
* if(result != sentence){<br/>
* // 有敏感词<br/>
* }
* </code>
*
* @param sentence 句子
* @param replace 敏感词的替换字符
*/
public String filter(String sentence, char replace){
// 先转换为StringPointer
StringPointer sp = new StringPointer(sentence);
// 标示是否替换
boolean replaced = false;
// 匹配的起始位置
int i = 0;
while(i < sp.length - 1){
/*
* 移动到下一个匹配位置的步进:
* 如果未匹配为1,如果匹配是匹配的词长度
*/
int step = 1;
// 计算此位置开始2个字符的hash
int hash = sp.nextTwoCharHash(i);
/*
* 根据hash获取第一个节点,
* 真正匹配的节点可能不是第一个,
* 所以有后面的for循环。
*/
SensitiveNode node = nodes[hash & (nodes.length - 1)];
/*
* 如果非敏感词,node基本为null。
* 这一步大幅提升效率
*/
if(node != null){
/*
* 如果能拿到第一个节点,
* 才计算mix(mix相同表示2个字符相同)。
* mix的意义和HashMap先hash再equals的equals部分类似。
*/
int mix = sp.nextTwoCharMix(i);
/*
* 循环所有的节点,如果非敏感词,
* mix相同的概率非常低,提高效率
*/
outer:
for(; node != null; node = node.next){
/*
* 对于一个节点,先根据头2个字符判断是否属于这个节点。
* 如果属于这个节点,看这个节点的词库是否命中。
* 此代码块中访问次数已经很少,不是优化重点
*/
if(node.headTwoCharMix == mix){
/*
* 查出比剩余sentence小的最大的词。
* 例如剩余sentence为"色情电影哪家强?",
* 这个节点含三个词从小到大为:"色情"、"色情电影"、"色情信息"。
* 则从“色情电影”开始向前匹配
*/
NavigableSet<StringPointer> desSet = node.words.headSet(sp.substring(i), true);
if(desSet != null){
for(StringPointer word: desSet.descendingSet()){
/*
* 仍然需要再判断一次,例如"色情信息哪里有?",
* 如果节点只包含"色情电影"一个词,
* 仍然能够取到word为"色情电影",但是不该匹配。
*/
if(sp.nextStartsWith(i, word)){
// 匹配成功,将匹配的部分,用replace制定的内容替代
sp.fill(i, i + word.length, replace);
// 跳过已经替代的部分
step = word.length;
// 标示有替换
replaced = true;
// 跳出循环(然后是while循环的下一个位置)
break outer;
}
}
}
}
}
}
// 移动到下一个匹配位置
i += step;
}
// 如果没有替换,直接返回入参(节约String的构造copy)
if(replaced){
return sp.toString();
}else{
return sentence;
}
}
}
import java.io.Serializable;
import java.util.TreeSet;
/**
* 敏感词节点,每个节点包含了以相同的2个字符开头的所有词
*
*/
public class SensitiveNode implements Serializable{
private static final long serialVersionUID = 1L;
/**
* 头两个字符的mix,mix相同,两个字符相同
*/
protected final int headTwoCharMix;
/**
* 所有以这两个字符开头的词表
*/
protected final TreeSet<StringPointer> words = new TreeSet<StringPointer>();
/**
* 下一个节点
*/
protected SensitiveNode next;
public SensitiveNode(int headTwoCharMix){
this.headTwoCharMix = headTwoCharMix;
}
public SensitiveNode(int headTwoCharMix, SensitiveNode parent){
this.headTwoCharMix = headTwoCharMix;
parent.next = this;
}
}
import java.io.Serializable;
import java.util.HashMap;
import java.util.TreeMap;
/**
* 没有注释的方法与{@link String}类似<br/>
* * <b>注意:</b>没有(数组越界等的)安全检查<br/>
* * 可以作为{@link HashMap}和{@link TreeMap}的key
*/
public class StringPointer implements Serializable, CharSequence, Comparable<StringPointer>{
private static final long serialVersionUID = 1L;
protected final char[] value;
protected final int offset;
protected final int length;
private int hash = 0;
public StringPointer(String str){
value = str.toCharArray();
offset = 0;
length = value.length;
}
public StringPointer(char[] value, int offset, int length){
this.value = value;
this.offset = offset;
this.length = length;
}
/**
* 计算该位置后(包含)2个字符的hash值
*
* @param i 从 0 到 length - 2
* @return hash值
*/
public int nextTwoCharHash(int i){
return 31 * value[offset + i] + value[offset + i + 1];
}
/**
* 计算该位置后(包含)2个字符和为1个int型的值<br/>
* int值相同表示2个字符相同
*
* @param i 从 0 到 length - 2
* @return int值
*/
public int nextTwoCharMix(int i){
return (value[offset + i] << 16) | value[offset + i + 1];
}
/**
* 该位置后(包含)的字符串,是否以某个词(word)开头
*
* @param i 从 0 到 length - 2
* @param word 词
* @return 是否?
*/
public boolean nextStartsWith(int i, StringPointer word){
// 是否长度超出
if(word.length > length - i){
return false;
}
// 从尾开始判断
for(int c = word.length - 1; c >= 0; c --){
if(value[offset + i + c] != word.value[word.offset + c]){
return false;
}
}
return true;
}
/**
* 填充(替换)
*
* @param begin 从此位置开始(含)
* @param end 到此位置结束(不含)
* @param fillWith 以此字符填充(替换)
*/
public void fill(int begin, int end, char fillWith){
for(int i = begin; i < end; i ++){
value[offset + i] = fillWith;
}
}
public int length(){
return length;
}
public char charAt(int i){
return value[offset + i];
}
public StringPointer substring(int begin){
return new StringPointer(value, offset + begin, length - begin);
}
public StringPointer substring(int begin, int end){
return new StringPointer(value, offset + begin, end - begin);
}
@Override
public CharSequence subSequence(int start, int end) {
return substring(start, end);
}
public String toString(){
return new String(value, offset, length);
}
public int hashCode() {
int h = hash;
if (h == 0 && length > 0) {
for (int i = 0; i < length; i++) {
h = 31 * h + value[offset + i];
}
hash = h;
}
return h;
}
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof StringPointer) {
StringPointer that = (StringPointer)anObject;
if (length == that.length) {
char v1[] = this.value;
char v2[] = that.value;
for(int i = 0; i < this.length; i ++){
if(v1[this.offset + i] != v2[that.offset + i]){
return false;
}
}
return true;
}
}
return false;
}
@Override
public int compareTo(StringPointer that) {
int len1 = this.length;
int len2 = that.length;
int lim = Math.min(len1, len2);
char v1[] = this.value;
char v2[] = that.value;
int k = 0;
while (k < lim) {
char c1 = v1[this.offset + k];
char c2 = v2[that.offset + k];
if (c1 != c2) {
return c1 - c2;
}
k++;
}
return len1 - len2;
}
}
- 2、创建 过滤器: SenFilter 和 SenRequestWrapper 类
import com.alibaba.fastjson.JSON;
import com.geely.common.utils.sen.SensitiveFilter;
import com.geely.framework.web.domain.AjaxResult;
import org.springframework.web.bind.annotation.RequestMethod;
import javax.servlet.*;
import javax.servlet.http.HttpServletRequest;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Enumeration;
/**
* @description ${ 敏感字过滤器}
* @Version: 1.0
*/
public class SenFilter implements Filter {
@Override
public void init(FilterConfig filterConfig) throws ServletException {
}
@Override
public void doFilter(ServletRequest servletRequest, ServletResponse servletResponse, FilterChain filterChain) throws IOException, ServletException {
HttpServletRequest httpServletRequest = (HttpServletRequest) servletRequest;
boolean flag = true;
SensitiveFilter filter = SensitiveFilter.DEFAULT;
if (httpServletRequest.getMethod().equals(RequestMethod.GET.name())) { // GET请求
//获取前端传递的所有参数名的枚举
Enumeration pNames = httpServletRequest.getParameterNames();
//遍历枚举
while(pNames.hasMoreElements()){
//获取参数名
String name=(String)pNames.nextElement();
//获取参数值
String value =httpServletRequest.getParameter(name);
//对参数值进行敏感词处理,并重新设置到request
String str = filter.filter(value, '*');
if(value != str){
servletResponse.setContentType("application/json; charset=UTF-8");
PrintWriter out = servletResponse.getWriter();
out.println(JSON.toJSONString(AjaxResult.error("参数包含敏感信息")));
out.flush();
flag = false;
break;
}
httpServletRequest.setAttribute(name,str);
}
if(flag){
filterChain.doFilter(servletRequest, servletResponse);
}
} else if (httpServletRequest.getMethod().equals(RequestMethod.POST.name())) { // POST请求:
SenRequestWrapper senRequestWrapper = new SenRequestWrapper(httpServletRequest);
if(senRequestWrapper == null) {
filterChain.doFilter(servletRequest, servletResponse);
} else {
String body = senRequestWrapper.getBody();
String filted = filter.filter(body, '*');
if (body != filted) {
servletResponse.setContentType("application/json; charset=UTF-8");
PrintWriter out = servletResponse.getWriter();
out.println(JSON.toJSONString(AjaxResult.error("参数包含敏感信息")));
out.flush();
} else {
filterChain.doFilter(senRequestWrapper, servletResponse);
}
}
} else {
filterChain.doFilter(servletRequest, servletResponse);
}
}
@Override
public void destroy() {
}
}
import javax.servlet.ReadListener;
import javax.servlet.ServletInputStream;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletRequestWrapper;
import java.io.*;
public class SenRequestWrapper extends HttpServletRequestWrapper {
private String body;
public SenRequestWrapper(HttpServletRequest request) throws IOException {
super(request);
StringBuilder stringBuilder = new StringBuilder();
BufferedReader bufferedReader = null;
try {
InputStream inputStream = request.getInputStream();
if (inputStream != null) {
bufferedReader = new BufferedReader(new InputStreamReader(inputStream,"UTF-8"));
char[] charBuffer = new char[128];
int bytesRead = -1;
while ((bytesRead = bufferedReader.read(charBuffer)) > 0) {
stringBuilder.append(charBuffer, 0, bytesRead);
}
} else {
stringBuilder.append("");
}
} catch (IOException ex) {
throw ex;
} finally {
if (bufferedReader != null) {
try {
bufferedReader.close();
} catch (IOException ex) {
throw ex;
}
}
}
body = stringBuilder.toString();
}
@Override
public ServletInputStream getInputStream() throws IOException {
final ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(body.getBytes());
ServletInputStream servletInputStream = new ServletInputStream() {
public boolean isFinished() {
return false;
}
public boolean isReady() {
return false;
}
public void setReadListener(ReadListener readListener) {}
public int read() throws IOException {
return byteArrayInputStream.read();
}
};
return servletInputStream;
}
@Override
public BufferedReader getReader() throws IOException {
return new BufferedReader(new InputStreamReader(this.getInputStream(),"UTF-8"));
}
public String getBody() {
return this.body;
}
}
3、创建 FilterConfig 类
@Bean
public FilterRegistrationBean senFilterRegistration() {
FilterRegistrationBean registration = new FilterRegistrationBean();
registration.setFilter(new SenFilter());
registration.addUrlPatterns("/*");
registration.setName("senFilter");
registration.setOrder(2);
Map<String, String> initParameters = Maps.newHashMap();
//-excludes用于配置不需要参数过滤的请求url;
//-isIncludeRichText默认为true,主要用于设置富文本内容是否需要过滤。
initParameters.put("excludes", "/favicon.ico,/img/*,/js/*,/css/*");
initParameters.put("isIncludeRichText", "true");
registration.setInitParameters(initParameters);
return registration;
}