64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

这道题和62,63题类似

#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
     int minPathSum(vector<vector<int> >& grid)  
    {
        int m=grid.size();
        int n=grid[0].size();
        vector<vector<int> >min_sum(m,vector<int>(n,0));
        int i,j;
        for(i=0;i<m;i++)
            for(j=0;j<n;j++)
            {
                if(i==0&&j==0)
                    min_sum[i][j]=grid[i][j];
                else if(i==0)
                    min_sum[i][j]=grid[i][j]+min_sum[i][j-1];
                else if(j==0)
                    min_sum[i][j]=grid[i][j]+min_sum[i-1][j];
                else
                {
                    int x=grid[i][j]+min_sum[i][j-1];
                    int y=grid[i][j]+min_sum[i-1][j];
                    if(x<y)
                        min_sum[i][j]=x;
                    else
                        min_sum[i][j]=y;
                }
            }
        return min_sum[m-1][n-1];
    }
};
int main()
{
    int m,n,i,j,temp;
    cin>>m>>n;
    vector<vector<int> >grid(m,vector<int>(n,0));
    for(i=0;i<m;i++)
        for(j=0;j<n;j++)
        {
            cin>>temp;
            grid[i][j]=temp;
        }
    Solution solve;
    cout<<solve.minPathSum(grid) <<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值