问题描述 :
目的:使用C++模板设计二叉树的抽象数据类型(ADT)。并在此基础上,使用二叉树ADT的基本操作,设计并实现简单应用的算法设计。
内容:(1)请参照链表的ADT模板,设计二叉树的抽象数据类型。(由于该环境目前仅支持单文件的编译,故将所有内容都集中在一个源文件内。在实际的设计中,推荐将抽象类及对应的派生类分别放在单独的头文件中。参考教材、课件,以及网盘中的链表ADT原型文件,自行设计二叉树的ADT。)
(2)ADT的简单应用:使用该ADT设计并实现若干应用二叉树的算法设计。
应用4:要求设计一个非递归算法,实现二叉树的中序遍历。二叉树的存储结构的建立参见二叉树应用1。
提示:根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:
对于任一结点P,
(1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;
(2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;
(3)直到P为NULL并且栈为空则遍历结束。
解题代码:
// tree.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <sstream>
#include <stack>
#include <map>
#include <ctime>
#include <array>
#include <set>
using namespace std;
vector<string> departString_string(string data)
{
vector<int> back_part;//output type
int i, j;
vector<string> part;
string A_part;
stringstream room;
room.str(data);
while (room >> A_part)
part.push_back(A_part);
return part;
}
//————————————————
//版权声明:本文为CSDN博主「systemyff」的原创文章,遵循CC 4.0 BY - SA版权协议,转载请附上原文出处链接及本声明。
//原文链接:https ://blog.csdn.net/u014377763/article/details/113845555
template<class ElemType>
struct tree_point {
ElemType data;//数据
struct tree_point* l_child, * r_child;//左、右孩子指针
};
template<class ElemType>
class BinaryTree {
private:
vector<tree_point<ElemType>*> outlist;
tree_point<ElemType>* root; // 头指针
public:
BinaryTree() :root(NULL)
{
//无参数的构造函数
}
~BinaryTree()
{
//析构函数
}
void BinaryTree_fron(vector<ElemType> lis, ElemType nut)
{
stack<tree_point<ElemType>*> s;
tree_point<ElemType>* p_Parent = NULL, * p_Child = NULL;
int i = 0;
int flag = 0;//控制左右
p_Parent = new tree_point<ElemType>;
p_Parent->data = lis[i];
p_Parent->l_child = p_Parent->r_child = NULL;
s.push(p_Parent);
root = p_Parent;
i = 1;
flag = 0;
while (!s.empty())
{
if (lis[i] != nut)
{
p_Parent = new tree_point<ElemType>;
p_Parent->data = lis[i];
p_Parent->l_child = p_Parent->r_child = NULL;
if (flag == 0)
{
p_Child = s.top();
p_Child->l_child = p_Parent;
}
else if (flag == 1)
{
p_Child = s.top();
s.pop();
p_Child->r_child = p_Parent;
}
s.push(p_Parent);
flag = 0;
}
else
{
if (flag == 0)
flag = 1;
else if (flag == 1)
s.pop();
}
i++;
}
}
tree_point<ElemType>* get_root()
{
return root;
}
void s_qianxu(void)
{
outlist.clear();
if (root == NULL)
return;
tree_point<ElemType>* p = root;
stack<tree_point<ElemType>*> s;
while (!s.empty() || p)
{
while (p)
{
outlist.push_back(p);
s.push(p);
p = p->l_child;
}
if (!s.empty())
{
p = s.top();
s.pop();
p = p->r_child;
}
}
return ;
}
void s_zhongxu(void)
{
outlist.clear();
if (root == NULL)
return;
tree_point<ElemType>* p = root;
stack<tree_point<ElemType>*> s;
while (!s.empty() || p)
{
if (p)
{
s.push(p);
p = p->l_child;
}
else
{
p = s.top();
s.pop();
outlist.push_back(p);
p = p->r_child;
}
}
return ;
}
void s_houxu(void)
{
if (root == NULL)
return;
stack<tree_point<ElemType>*> s;
//pCur:当前访问节点,pLastVisit:上次访问节点
tree_point<ElemType>* pCur, * pLastVisit;
pCur = root;
pLastVisit = NULL;
while (pCur)
{
s.push(pCur);
pCur = pCur->l_child;
}
while (!s.empty())
{
pCur = s.top();
s.pop();
if (pCur->r_child == NULL || pCur->r_child == pLastVisit)
{
outlist.push_back(pCur);
pLastVisit = pCur;
}
else
{
s.push(pCur);
pCur = pCur->r_child;
while (pCur)
{
s.push(pCur);
pCur = pCur->l_child;
}
}
}
return ;
}
void qianxu(tree_point<ElemType>* t)
{
outlist.push_back(t);
if (t->l_child != NULL)
qianxu(t->l_child);
if (t->r_child != NULL)
qianxu(t->r_child);
return;
}
void zhongxu(tree_point<ElemType>* t)
{
if (t->l_child != NULL)
zhongxu(t->l_child);
outlist.push_back(t);
if (t->r_child != NULL)
zhongxu(t->r_child);
return;
}
void houxu(tree_point<ElemType>* t)
{
if (t->l_child != NULL)
houxu(t->l_child);
if (t->r_child != NULL)
houxu(t->r_child);
outlist.push_back(t);
return;
}
int c_t = 0;
void cengxu(tree_point<ElemType>* t)
{
vector<tree_point<ElemType>* > q;
q.push_back(t);
int last = 1, cur = 0;
while (cur < q.size())
{
last = q.size();
while (cur < last)
{
outlist.push_back(q[cur]);
if (q[cur]->l_child)
q.push_back(q[cur]->l_child);
if (q[cur]->r_child)
q.push_back(q[cur]->r_child);
++cur;
}
c_t++;
}
}
void out_lis()
{
int i;
for (i = 0; i < outlist.size(); i++)
{
cout << outlist[i]->data;
if (i != outlist.size() - 1)
cout << ",";
else
cout << endl;
}
outlist.clear();
}
int cnt = 0, p_cnt = 0;
void t_cnt(tree_point<ElemType>* t)
{
p_cnt++;
if (t->l_child != NULL && t->r_child != NULL)
cnt++;
if (t->l_child != NULL)
t_cnt(t->l_child);
if (t->r_child != NULL)
t_cnt(t->r_child);
}
int cengshu()
{
c_t = 0;
cengxu(root);
outlist.clear();
return c_t;
}
int P_cengshu(tree_point<ElemType>* t)
{
c_t = 0;
cengxu(t);
outlist.clear();
return c_t;
}
int twocnt()
{
cnt = 0;
t_cnt(root);
return cnt;
}
int P_twocnt(tree_point<ElemType>* t)
{
cnt = 0;
t_cnt(t);
return cnt;
}
int pointcnt()
{
p_cnt = 0;
t_cnt(root);
return p_cnt;
}
tree_point<ElemType>* father_p;
void find_fatherNow(tree_point<ElemType>* t, ElemType ss)
{
if (t->l_child != NULL)
if (t->l_child->data == ss)
{
father_p = t;
return;
}
if (t->r_child != NULL)
if (t->r_child->data == ss)
{
father_p = t;
return;
}
if (t->l_child != NULL)
find_fatherNow(t->l_child, ss);
if (t->r_child != NULL)
find_fatherNow(t->r_child, ss);
return;
}
tree_point<ElemType>* find_father(tree_point<ElemType>* t, ElemType ss)
{
father_p = NULL;
find_fatherNow(t, ss);
return father_p;
}
tree_point<ElemType>* nas_p;
void find_selfNOW(tree_point<ElemType>* t, ElemType ss)
{
if (t->data == ss)
nas_p = t;
if (t->l_child != NULL)
find_selfNOW(t->l_child, ss);
if (t->r_child != NULL)
find_selfNOW(t->r_child, ss);
return;
}
tree_point<ElemType>* find_self(tree_point<ElemType>* t, ElemType ss)
{
nas_p = NULL;
find_selfNOW(t, ss);
return nas_p;
}
void fast_delChild(tree_point<ElemType>* t, bool flag)
{
if (flag == 0)
t->l_child = NULL;
else
t->r_child = NULL;
return;
}
void slow_delChild(tree_point<ElemType>* t, bool flag)
{
if (flag == 0)
t->l_child = NULL;
else
t->r_child = NULL;
return;
}
bool is_same = 1;
bool check_same(tree_point<ElemType>* t1, tree_point<ElemType>* t2)
{
if (((t1->l_child != NULL && t2->l_child != NULL) || (t1->l_child == NULL && t2->l_child == NULL))
&& ((t1->r_child != NULL && t2->r_child != NULL) || (t1->r_child == NULL && t2->r_child == NULL))
&& t1->data == t2->data)
{
if (t1->l_child != NULL)
check_same(t1->l_child,t2->l_child);
if (t1->r_child != NULL)
check_same(t1->r_child, t2->r_child);
}
else
{
is_same = 0;
return 0;
}
}
bool operator==(BinaryTree B2)
{
is_same = 1;
check_same(root, B2.get_root());
return is_same;
}
};
int main()
{
string s, ins, ins1, nulls;
vector<string> part_in, part_in1;
BinaryTree<string> a;
/*BinaryTree<string> b;*/
cin >> nulls;
cin.get();
getline(cin, ins);
part_in = departString_string(ins);
a.BinaryTree_fron(part_in, nulls);
a.s_zhongxu();
a.out_lis();
return 0;
}