- 博客(10)
- 资源 (2)
- 收藏
- 关注
原创 02.机器学习样本评估与选择
02.机器学习样本评估与选择经验误差与过拟合精度=1-错误率=1-错误样本数/总样本数学习器的实际预测输出与样本的真实输出之间的差异称为“误差”(error),学习器在训练集上的误差称为“训练误差”(training error)或“经验误差”(empirical error),在新样本上的误差称为“泛化误差”(generalizationerror).显然,我们希望得到泛化误差小的学习器。模型选择(modelselection)问题:理想的解决方案当然是对候选模型的泛化误差进行评估,然后选择泛化
2021-09-04 23:42:14 1031
原创 02.样本评估与选择
02.样本评估与选择经验误差与过拟合精度=1-错误率=1-错误样本数/总样本数学习器的实际预测输出与样本的真实输出之间的差异称为“误差”(error),学习器在训练集上的误差称为“训练误差”(training error)或“经验误差”(empirical error),在新样本上的误差称为“泛化误差”(generalizationerror).显然,我们希望得到泛化误差小的学习器。模型选择(modelselection)问题:理想的解决方案当然是对候选模型的泛化误差进行评估,然后选择泛化误差最小
2021-09-04 23:36:12 735
原创 Go 中的 byte、rune 与 string
Go 中的 byte、rune 与 stringbyte 和 runebyte 是 uint8 的别名,其字面量是 8 位整数值,byte 切片相比于不可变的 string 方便常用许多。它可以更改每个字节或字符。这对于处理文件内容(无论是文本文件、二进制文件还是来自网络的I/O流)非常有效。byte 切片是一个可变的字节序列rune 是 int32 的别名,其字面量是 32 位整数值,用来表示 Unicode 字符编码。rune 类似于 byte,不同点在于 rune 每个索引是一个字符而不是一个字
2021-09-03 11:43:23 1002
原创 macOS VSCode 配置 Go 编程环境
macOS VSCode 配置 Go 编程环境笔者使用 macOS BigSur 安装完 Go 1.16.6 和 VSCode Go插件,然后运行时,往往会报诸如下面的错误:build esc: cannot load xxx : malformed module path “xxx”: missing dot in first path elementwarning: GOPATH set to GOROOT (/Users/xxx/go/) has no effect实际上,这都是由于 GO
2021-08-29 17:05:50 1752
原创 Go modules
Go modules为了解决 GOPATH 的问题,官方在 1.11 开始推出了Go Modules的功能,将第三方库储存在本地的空间,并且给程序去引用。首先要设定GO111MODULE环境变量,总共可以三种不同的值:autogo命令会根据当前目录来决定是否启用modules功能。 需要满足两种情形:该项目目录不在GOPATH/src/下当前或上一层目录存在go.modonGo 1.16.6 的默认值,go命令会使用modules,而不会GOPATH目录下查找。offgo命令将不
2021-08-26 16:48:19 106
原创 GOROOT、GOPATH 以及 Go 相关命令
GOROOT、GOPATH 以及 Go 相关命令最近在配置 VS Code 的 go 插件时,总是报错找不到包之类的,发现时 GOPATH 和 GOROOT 在该编辑器中没有配置,借此了解一下两个环境变量。目前笔者用系统是 macOS BigSur,go 版本 1.16.6GOROOT$GOROOT,便是 Go 的安装路径,存放 Go 的内置程序库。通常你安装完后,你电脑的环境变量就会设好 GOROOT 路径。当你开发 Go 程序的时候,当你 import 内置程序库的时候,并不需要额外安装,而当程序
2021-08-26 15:59:25 1943
原创 西瓜书第五章
西瓜书第五章神经元模型M-P神经元模型:n个其他单元的输入信号通过带权重的连接,总的输入值与阈值比较,通过激活函数处理产生输出。常见的激活函数有阶跃函数和Sigmoid函数11+????−????。感知机与多层网络感知机为两层网络,一层输入一层输出。学习目标为权重和阈值,其中阈值的学习也可以转化为权重。学习过程为????????←????????+Δ????????,Δ????????=????(????−????̂ )????????,其中????为学习率。可以证明线性可分的问题(可以使用线
2021-07-25 22:05:52 220
原创 西瓜书第四章
西瓜书第四章基本流程决策树的每一个叶子结点表示一个决策结果,每个中间节点表示一个属性测试。学习目的为生成一颗泛化能力强的决策树(处理未见示例能力强)决策树学习的基本过程是递归下降的划分过程,节点对给定的数据集和属性集学习并得到一个划分或者将自己标记为叶子结点。划分选择决策树学习的关键步骤在于选择合适的最优划分属性。信息增益使用信息熵(频率负对数的期望)来度量样本集合纯度。????????????(????)=−∑|????|????=1????????????????????2??????
2021-07-22 23:36:42 148 2
原创 03.线性模型概述
西瓜书第三章 线性模型简介给定由d个属性描述的示例x=(x1;x2;…;xd)\boldsymbol{x}=\left(x_{1} ; x_{2} ; \ldots ; x_{d}\right)x=(x1;x2;…;xd), 其中xix_{i}xi是 x\boldsymbol{x}x 在第 i 个属性上的取值,线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数,即f(x)=w1x1+w2x2+…+wdxd+bf(x)=w_{1} x_{1}+w_{2} x_{2
2021-07-19 23:21:44 247 2
原创 00. 机器学习概述
西瓜书第一二章第一章相关概念下面以使用范围较广的监督学习为例子,介绍机器学习的概念数据集训练集 有正确答案的,被标记的,用来学习,归纳的数据集。测试集 没有正确答案的,没有标记的,用来测试模型的优劣的数据集。对于非监督学习,训练集和测试集就没与什么区别了,只是使用时的目的不一样而已。上图中数据的每一行,叫做一个示例(instance)、样例(example)、样本(sample)前三列每一列的表头叫做:属性(attribute)、特征(feature)每个样本的每一列上的值
2021-07-13 21:09:40 151
【2021】Python Flask 二维码数据传输系统
2021-08-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人