1.Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库。
脏读
一个事务读到另外一个事务还没有提交的数据,我们称之为脏读。
解决方法:把事务隔离级别调整到READ COMMITTED(Read Committed事务不能读取事务已修改,但未提交的记录),这时我们重复上面的动作会发现事务二会一直等到事务一执行完毕再返回结果,因为此时事务以已经把自己的更改ROLLBACK了,所以事务二可以返回正确的结果。
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致
hibernate优点:
1、封装了jdbc,简化了很多重复性代码。
2、简化了DAO层编码工作,使开发更对象化了。
3、移植性好,支持各种数据库,如果换个数据库只要在配置文件中变换配置就可以了,不用改变hibernate代码。
4、支持透明持久化,因为hibernate操作的是纯粹的(pojo)java类,没有实现任何接口,没有侵入性。所以说它是一个轻量级框架。
2.Hibernate的核心接口一共有6个,分别为:Session、SessionFactory、Transaction、Query、Criteria和Configuration。
Session接口相当于connection
SessionFactory接口 SessionFactory接口负责初始化Hibernate。它充当数据存储源的代理,并负责创建Session对象。这里用到了工厂模式。需要注意的是
SessionFactory并不是轻量级的,因为一般情况下,一个项目通常只需要一个SessionFactory就够,当需要操作多个数据库时,可以为每个数据库指定一个
SessionFactory。
Configuration类 Configuration类负责配置并启动Hibernate,创建SessionFactory对象。在Hibernate的启动的过程中,Configuration类的实例首先定位
映射文档位置、读取配置,然后创建SessionFactory对象
Transaction
Transaction接口负责事务相关的操作
Query和Criteria接口
Query和Criteria接口负责执行各种数据库查询。它可以使用HQL语句或SQL语句两种表达方式。
3.一级缓存的管理
当应用程序调用Session的save()、update()、saveOrUpdate()、get()或load(),以及调用查询接口的 list()、iterate()或filter()方法时,如果在Session
缓存中还不存在相应的对象,Hibernate就会把该对象加入到第一级缓存中。当清理缓存时,Hibernate会根据缓存中对象的状态变化来同步更新数据库。 Session为
应用程序提供了两个管理缓存的方法: evict(Object obj):从缓存中清除参数指定的持久化对象。 clear():清空缓存中所有持久化对象。
二级缓存的管理
3.1. Hibernate的二级缓存策略的一般过程如下:1) 条件查询的时候,总是发出一条select * from table_name where …. (选择所有字段)这样的SQL语句查
询数据库,一次获得所有的数据对象。 2) 把获得的所有数据对象根据ID放入到第二级缓存中。 3) 当Hibernate根据ID访问数据对象的时候,首先从Session一级
缓存中查;查不到,如果配置了二级缓存,那么从二级缓存中查;查不到,再查询数据库,把结果按照ID放入到缓存。 4) 删除、更新、增加数据的时候,同时更新缓存。
Hibernate的缓存机制
一级缓存:session级的缓存也叫事务级的缓存,只缓存实体,生命周期和session一致。不能对其进行管理。 不用显示的调用。
二级缓存:sessionFactory缓存,也叫进程级的缓存,使用第3方插件实现的,也值缓存实体,生命周期和sessionFactory一致,可以进行管理。
4.Hibernate与延迟加载 节省了内存的开销,从而提高了服务器的性能。
Hibernate提供的延迟加载机制。这种初始化策略只在一个对象调用它的一对多或多对多关系时才将关系对象读取出来。
非延迟加载在读取一个对象的时候会将与这个对象所有相关的其他对象一起读取出来。
这有时会导致成百的(如果不是成千的话)select语句在读取对象的时候执行。这个问题有时出现在使用双向关系的时候,经常会导致整个数据库都在初始化的阶段被读出来了。
手动清除这一级缓存:Session.evict以及 Session.clear
编辑本段Hibernate与延迟加载 Hibernate对象关系映射提供延迟的与非延迟的对象初始化。非延迟加载在读取一个对象的时候会将与这个对象所有相关的其他对象一起读取出来。
这有时会导致成百的(如果不是成千的话)select语句在读取对象的时候执行。这个问题有时出现在使用双向关系的时候,经常会导致整个数据库都在初始化的阶段被读出来了。当然
,你可以不厌其烦地检查每一个对象与其他对象的关系,并把那些最昂贵的删除,但是到最后,我们可能会因此失去了本想在ORM工具中获得的便利。 一个明显的解决方法是使用
Hibernate提供的延迟加载机制。这种初始化策略只在一个对象调用它的一对多或多对多关系时才将关系对象读取出来。这个过程对开发者来说是透明的,而且只进行了很少的数据库操
作请求,因此会得到比较明显的性能提升。这项技术的一个缺陷是延迟加载技术要求一个Hibernate会话要在对象使用的时候一直开着。这会成为通过使用DAO模式将持久层抽象出来时的
一个主要问题。为了将持久化机制完全地抽象出来,所有的数据库逻辑,包括打开或关闭会话,都不能在应用层出现。最常见的是,一些实现了简单接口的DAO实现类将数据库逻辑完全
封装起来了。一种快速但是笨拙的解决方法是放弃DAO模式,将数据库连接逻辑加到应用层中来。这可能对一些小的应用程序有效,但是在大的系统中,这是一个严重的设计缺陷,妨碍了
系统的可扩展性。编辑本段在Web层进行延迟加载 幸运的是,Spring框架为Hibernate延迟加载与DAO模式的整合提供了一种方便的解决方法。
以一个Web应用为例,Spring提供
了OpenSessionInViewFilter和OpenSessionInViewInterceptor。我们可以随意选择一个类来实现相同的功能。两种方法唯一的不同就在于interceptor在Spring容器中运行并被配置
在web应用的上下文中,而Filter在Spring之前运行并被配置在web.xml中。不管用哪个,他们都在请求将当前会话与当前(数据库)线程绑定时打开Hibernate会话。一旦已绑定到线
程,这个打开了的Hibernate会话可以在DAO实现类中透明地使用。这个会话会为延迟加载数据库中值对象的视图保持打开状态。一旦这个逻辑视图完成了,Hibernate会话会在Filter
的doFilter方法或者Interceptor的postHandle方法中被关闭。
实现方法在web.xml中加入
<filter>
<filter-name>hibernateFilter</filter-name>
<filter-class>org.springframework.orm.hibernate3.support.OpenSessionInViewFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>hibernateFilter</filter-name>
<url-pattern>*.do</url-pattern>
</filter-mapping>
悲观锁
悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。
悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。
一个典型的倚赖数据库的悲观锁调用:
select * from account where name="Erica" for update 这条 sql 语句锁定了 account 表中所有符合检索条件( name="Erica" )的记录。 本次事务提交之前(事务提交时会释
放事务过程中的锁),外界无法修改这些记录。 Hibernate 的悲观锁,也是基于数据库的锁机制实现。 下面的代码实现了对查询记录的加锁: String hqlStr = "from TUser
as user where user.name='Erica'"; Query query = session.createQuery(hqlStr); query.setLockMode("user",LockMode.UPGRADE); // 加锁 List userList = query.list()
;// 执行查询,获取数据 query.setLockMode 对查询语句中,特定别名所对应的记录进行加锁(我们为TUser 类指定了一个别名"user"),这里也就是对返回的所有 user 记录进行加锁。
如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过 程中(从操作员读出数据、
开始修改直至提交修改结果的全过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几百上千个并发,这样的情况将导致怎样的后果。
乐观锁机制在一定程度上解决了这个问题。
乐观锁,大多是基于数据版本 ( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,
一般是通过为数据库表增加一个 “version” 字段来实现。 读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当
前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。 对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有
一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。 1 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。
2 在操作员 A 操作的过程中,操作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。
3 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,
数据库记录 version 更新为 2 。 4 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数
据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。 这样,就避免了操作员 B 用基于 version=1
的旧数据修改的结果覆盖操作员A 的操作结果的可能。编辑本段优点 从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A和操作员 B 操作过程中,都没有对数据库数据加
锁),大大提升了大并发量下的系统整体性能表现。
6 死锁
两个事务各锁定一个资源,都要获取对方的资源后才能解锁。
当二或多个工作各自具有某个资源的锁定,但其它工作尝试要锁定此资源,而造成工作永久封锁彼此时,会发生死锁。例如:
1. 事务 A 取得数据列 1 的共享锁定。
2. 事务B 取得数据列 2 的共享锁定。
3. 事务A 现在要求数据列 2 的独占锁定,但会被封锁直到事务B 完成并释出对数据列 2 的共享锁定为止。
4. 事务B 现在要求数据列 1 的独占锁定,但会被封锁直到事务A 完成并释出对数据列 1 的共享锁定为止。
等到事务B 完成后,事务A 才能完成,但事务B 被事务A 封锁了。这个状况也称为「循环相依性」(Cyclic Dependency)。事务A 相依于事务B,并且事务B 也因为相依于事务A 而封闭了这个循环。
脏读
一个事务读到另外一个事务还没有提交的数据,我们称之为脏读。
解决方法:把事务隔离级别调整到READ COMMITTED(Read Committed事务不能读取事务已修改,但未提交的记录),这时我们重复上面的动作会发现事务二会一直等到事务一执行完毕再返回结果,因为此时事务以已经把自己的更改ROLLBACK了,所以事务二可以返回正确的结果。
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致
hibernate优点:
1、封装了jdbc,简化了很多重复性代码。
2、简化了DAO层编码工作,使开发更对象化了。
3、移植性好,支持各种数据库,如果换个数据库只要在配置文件中变换配置就可以了,不用改变hibernate代码。
4、支持透明持久化,因为hibernate操作的是纯粹的(pojo)java类,没有实现任何接口,没有侵入性。所以说它是一个轻量级框架。
2.Hibernate的核心接口一共有6个,分别为:Session、SessionFactory、Transaction、Query、Criteria和Configuration。
Session接口相当于connection
SessionFactory接口 SessionFactory接口负责初始化Hibernate。它充当数据存储源的代理,并负责创建Session对象。这里用到了工厂模式。需要注意的是
SessionFactory并不是轻量级的,因为一般情况下,一个项目通常只需要一个SessionFactory就够,当需要操作多个数据库时,可以为每个数据库指定一个
SessionFactory。
Configuration类 Configuration类负责配置并启动Hibernate,创建SessionFactory对象。在Hibernate的启动的过程中,Configuration类的实例首先定位
映射文档位置、读取配置,然后创建SessionFactory对象
Transaction
Transaction接口负责事务相关的操作
Query和Criteria接口
Query和Criteria接口负责执行各种数据库查询。它可以使用HQL语句或SQL语句两种表达方式。
3.一级缓存的管理
当应用程序调用Session的save()、update()、saveOrUpdate()、get()或load(),以及调用查询接口的 list()、iterate()或filter()方法时,如果在Session
缓存中还不存在相应的对象,Hibernate就会把该对象加入到第一级缓存中。当清理缓存时,Hibernate会根据缓存中对象的状态变化来同步更新数据库。 Session为
应用程序提供了两个管理缓存的方法: evict(Object obj):从缓存中清除参数指定的持久化对象。 clear():清空缓存中所有持久化对象。
二级缓存的管理
3.1. Hibernate的二级缓存策略的一般过程如下:1) 条件查询的时候,总是发出一条select * from table_name where …. (选择所有字段)这样的SQL语句查
询数据库,一次获得所有的数据对象。 2) 把获得的所有数据对象根据ID放入到第二级缓存中。 3) 当Hibernate根据ID访问数据对象的时候,首先从Session一级
缓存中查;查不到,如果配置了二级缓存,那么从二级缓存中查;查不到,再查询数据库,把结果按照ID放入到缓存。 4) 删除、更新、增加数据的时候,同时更新缓存。
Hibernate的缓存机制
一级缓存:session级的缓存也叫事务级的缓存,只缓存实体,生命周期和session一致。不能对其进行管理。 不用显示的调用。
二级缓存:sessionFactory缓存,也叫进程级的缓存,使用第3方插件实现的,也值缓存实体,生命周期和sessionFactory一致,可以进行管理。
4.Hibernate与延迟加载 节省了内存的开销,从而提高了服务器的性能。
Hibernate提供的延迟加载机制。这种初始化策略只在一个对象调用它的一对多或多对多关系时才将关系对象读取出来。
非延迟加载在读取一个对象的时候会将与这个对象所有相关的其他对象一起读取出来。
这有时会导致成百的(如果不是成千的话)select语句在读取对象的时候执行。这个问题有时出现在使用双向关系的时候,经常会导致整个数据库都在初始化的阶段被读出来了。
手动清除这一级缓存:Session.evict以及 Session.clear
编辑本段Hibernate与延迟加载 Hibernate对象关系映射提供延迟的与非延迟的对象初始化。非延迟加载在读取一个对象的时候会将与这个对象所有相关的其他对象一起读取出来。
这有时会导致成百的(如果不是成千的话)select语句在读取对象的时候执行。这个问题有时出现在使用双向关系的时候,经常会导致整个数据库都在初始化的阶段被读出来了。当然
,你可以不厌其烦地检查每一个对象与其他对象的关系,并把那些最昂贵的删除,但是到最后,我们可能会因此失去了本想在ORM工具中获得的便利。 一个明显的解决方法是使用
Hibernate提供的延迟加载机制。这种初始化策略只在一个对象调用它的一对多或多对多关系时才将关系对象读取出来。这个过程对开发者来说是透明的,而且只进行了很少的数据库操
作请求,因此会得到比较明显的性能提升。这项技术的一个缺陷是延迟加载技术要求一个Hibernate会话要在对象使用的时候一直开着。这会成为通过使用DAO模式将持久层抽象出来时的
一个主要问题。为了将持久化机制完全地抽象出来,所有的数据库逻辑,包括打开或关闭会话,都不能在应用层出现。最常见的是,一些实现了简单接口的DAO实现类将数据库逻辑完全
封装起来了。一种快速但是笨拙的解决方法是放弃DAO模式,将数据库连接逻辑加到应用层中来。这可能对一些小的应用程序有效,但是在大的系统中,这是一个严重的设计缺陷,妨碍了
系统的可扩展性。编辑本段在Web层进行延迟加载 幸运的是,Spring框架为Hibernate延迟加载与DAO模式的整合提供了一种方便的解决方法。
以一个Web应用为例,Spring提供
了OpenSessionInViewFilter和OpenSessionInViewInterceptor。我们可以随意选择一个类来实现相同的功能。两种方法唯一的不同就在于interceptor在Spring容器中运行并被配置
在web应用的上下文中,而Filter在Spring之前运行并被配置在web.xml中。不管用哪个,他们都在请求将当前会话与当前(数据库)线程绑定时打开Hibernate会话。一旦已绑定到线
程,这个打开了的Hibernate会话可以在DAO实现类中透明地使用。这个会话会为延迟加载数据库中值对象的视图保持打开状态。一旦这个逻辑视图完成了,Hibernate会话会在Filter
的doFilter方法或者Interceptor的postHandle方法中被关闭。
实现方法在web.xml中加入
<filter>
<filter-name>hibernateFilter</filter-name>
<filter-class>org.springframework.orm.hibernate3.support.OpenSessionInViewFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>hibernateFilter</filter-name>
<url-pattern>*.do</url-pattern>
</filter-mapping>
悲观锁
悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。
悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。
一个典型的倚赖数据库的悲观锁调用:
select * from account where name="Erica" for update 这条 sql 语句锁定了 account 表中所有符合检索条件( name="Erica" )的记录。 本次事务提交之前(事务提交时会释
放事务过程中的锁),外界无法修改这些记录。 Hibernate 的悲观锁,也是基于数据库的锁机制实现。 下面的代码实现了对查询记录的加锁: String hqlStr = "from TUser
as user where user.name='Erica'"; Query query = session.createQuery(hqlStr); query.setLockMode("user",LockMode.UPGRADE); // 加锁 List userList = query.list()
;// 执行查询,获取数据 query.setLockMode 对查询语句中,特定别名所对应的记录进行加锁(我们为TUser 类指定了一个别名"user"),这里也就是对返回的所有 user 记录进行加锁。
如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过 程中(从操作员读出数据、
开始修改直至提交修改结果的全过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几百上千个并发,这样的情况将导致怎样的后果。
乐观锁机制在一定程度上解决了这个问题。
乐观锁,大多是基于数据版本 ( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,
一般是通过为数据库表增加一个 “version” 字段来实现。 读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当
前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。 对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有
一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。 1 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。
2 在操作员 A 操作的过程中,操作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。
3 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,
数据库记录 version 更新为 2 。 4 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数
据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。 这样,就避免了操作员 B 用基于 version=1
的旧数据修改的结果覆盖操作员A 的操作结果的可能。编辑本段优点 从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A和操作员 B 操作过程中,都没有对数据库数据加
锁),大大提升了大并发量下的系统整体性能表现。
6 死锁
两个事务各锁定一个资源,都要获取对方的资源后才能解锁。
当二或多个工作各自具有某个资源的锁定,但其它工作尝试要锁定此资源,而造成工作永久封锁彼此时,会发生死锁。例如:
1. 事务 A 取得数据列 1 的共享锁定。
2. 事务B 取得数据列 2 的共享锁定。
3. 事务A 现在要求数据列 2 的独占锁定,但会被封锁直到事务B 完成并释出对数据列 2 的共享锁定为止。
4. 事务B 现在要求数据列 1 的独占锁定,但会被封锁直到事务A 完成并释出对数据列 1 的共享锁定为止。
等到事务B 完成后,事务A 才能完成,但事务B 被事务A 封锁了。这个状况也称为「循环相依性」(Cyclic Dependency)。事务A 相依于事务B,并且事务B 也因为相依于事务A 而封闭了这个循环。