- 博客(15)
- 收藏
- 关注
原创 c++ friend关键字
友元函数或友元类在类A中记录了那些函数或者类可以访问类A 的私有或保护成员。所以要在A中记录谁谁谁是我的朋友,可以反问我的私有或保护成员。如果是友元函数,那就是普通函数,并不属于类A,声明在类A中,定义在类A外如果是友元类,那就是友元类B定义在类A中,B的所有函数都可以访问类A的私有或保护成员。class B{private: int foo(A a ){ retu...
2019-09-18 14:42:40 238
原创 核函数选择
特征数:n,样本数:m1. 当n少,m多时:应该增加特征数,然后再用逻辑回归或者SVM线性核2. 当n少,m中等时: 应采用SVM高斯核3. 当n大于m时:应采用逻辑回归或者SVM线性核总结: 特征数多了少了都用逻辑回归和SVM线性核,正常情况用SVM高斯核...
2019-09-17 23:12:31 330
原创 复制构造函数
触发条件:当进行值传递的时候,被传递的对象调用它自身的复制构造函数。例如非引用的函数形参和函数返回值都会触发值传递。所以复制构造函数的唯一形参,必须是引用。不然就会被递归调用导致栈溢出。...
2019-09-13 14:23:54 118
原创 树和图的遍历
树层次遍历 先序遍历 中序遍历 后序遍历图深度优先搜索 广度优先搜索层次遍历和广度优先搜索一样,使用队列进行操作先中后序遍历和深度优先搜索一样,使用递归进行操作...
2019-06-25 16:59:27 131
原创 根据中序和前或后序确定一颗二叉树
已知二叉树后序遍历序列是DABEC,中序遍历序列是DEBAC,它的前序遍历序列是()CEDBA首先根据后序确定树的根是最后一个节点(C)然后根据中序,C左边为左子树(DEBA),右边为右子树(空)然后根据后序确定根节点的子树的根为E, 又因为只有左子树,所以左子树的根节点为E然后根据中序,E的左边为左子树(D),右边为右子树(BA)然后B的右边为右子树(A)所...
2019-06-25 10:58:18 4610
转载 前后序+中序,确定一棵树
https://blog.csdn.net/weixin_37818081/article/details/78498156
2019-06-18 10:48:34 518
转载 普通树转二叉树,森林转二叉树,有序树转二叉树
普通树转二叉树左孩子右兄弟普通树中,节点的第一个左孩子和第一个右兄弟分别作为二叉树中的左孩子和右孩子森林转二叉树第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子,用线连接起来。有序树转二叉树如果T2是由有序树T转换而来的二叉树,那么T中结点的前序就是T2中结点的前序,T中结点的后序就是T2中结点的中序 就这2句话...
2019-06-18 10:29:47 1146
原创 存储类修饰符——auto,register,extern,mutable,thread_local
auto:自 C++ 11 开始,auto 关键字不再是 C++ 存储类说明符auto 关键字用于两种情况:1. 声明变量时根据初始化表达式自动推断该变量的类型2. 声明函数时函数返回值的占位符。register:自 C++ 11 开始,register 关键字被弃用。extern:extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候mu...
2019-02-18 16:05:47 554
原创 存储类修饰符——static
被static修饰后的特性局部变量:1. 默认初始化为02. 函数结束不释放,下次调用函数会继续使用全局变量:1. 默认初始化为02. 其他文件对该变量不可见,降低了程序模块之间的耦合性函数:1. 其他文件对该函数不可见(static是一个很有用的关键字,使用得当可以使程序锦上添花。当然,有的公司编码规范明确规定只用于本文件的函数要全部使用static关键字声明,这...
2019-02-18 00:04:45 234
原创 spyder中不能写中文的解决方案
找到文件/usr/lib/x86_64-linux-gnu/qt5/plugins/platforminputcontexts/libfcitxplatforminputcontextplugin.so在anaconda3下搜索platforminputcontexts目录,结果会出现好几个platforminputcontexts正确的应该是anaconda3/lib/python3.6/sit...
2018-05-10 23:40:05 8852 2
原创 LLE总结
看下面这个链接就可以了点击打开链接链接中如果公式5到公式6是对的,那么yi是列向量,那么公式7以及后面的推导都不对,因为公式7以及后面的推导都是行向量。...
2018-05-05 21:58:20 230
转载 MDS总结
MDS求解方法: 1 最优化成本函数 假定原始高维数据样本的距离矩阵为D,则在低维下的距离矩阵为Z,我们可以用优化算法选取初始点,用梯度下降法求最佳逼近,使得||D-Z||最小 详情 :点击打开链接2 矩阵 也可以利用內积来求的低维映射。前者在样本较多时容易陷入局部最优,后者较稳定,但在样本不多时,效果比前者要差。详情 :点击打开链接 2链接中的部分注解 ...
2018-05-05 17:30:10 6023
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人