图论相关基本概念

此篇博客为对赵悦著的《概率图模型学习理论及其应用》学习笔记。


1.无向图

一个无向图U是一个二元组<N,E>,N是一个非空集合的顶点集,记为N(U),其中的元素是顶点或结点;E是无序积NxN的多重子集(元素可多次出现),是边集,记为E(U),其中的元素称为无向边或边。

例如,N={n1,n2,n3,n4,n5},E={(n1,n2), (n2,n2), (n2,n3), (n1,n3), (n1,n4)}

2.有向图

一个有向图D是一个二元组<N,E>,N是一个非空集合的顶点集,其中的元素是顶点或结点,记为N(D);E是卡氏积的多重子集,记为E(D),其元素称为有向边或边或弧。

例如,N={n1,n2,n3,n4,n5},E={<n1,n1>,<n2,n3>,<n3,n2>,<n3,n4>,<n2,n4>,<n4,n5>,<n5,n4>,<n1,n2>}

3.混合图

图中有些边是有向边,另一些边是无向边。

4.邻接集

给定一个无向图U和图中的一个结点ni,ni的邻接集就是在图中直接和ni相连的结点集合。根据有向边描述的方向性,在有向图中ni的邻接集又可分为两部分。

5.有限图、m阶图、平凡图

这几个概念都适用于有向图和无向图。

有限图:N、E都是有穷集合。

m阶图:|N|=m.

平凡图:E为空集且|N|=1.

6.平行边、多重图

平行边:连接同一对结点间的多条边。

多重图:含有平行边的图。

7.简单图

不含有平行边和自环的图。

8.无向完全图

设G是n阶无向简单图,若G中任何顶点都与其余n-1个顶点相邻,则G为n阶无向完全图。

9.有向完全图

图中各边都有方向,且每两个顶点之间都有两条方向相反的边。

10.子图和完全子图

子图:节点集和边集分别是某一图的节点集的子集和边集的子集的图。

完全子图:是完全图的子图。

11.极大完全子图与簇或图

极大完全子图:如果一个完全子图不是其他任何一个完全子图的真子图,则被称为极大完全子图。

簇/团:极大完全子图的结点构成的集合。

12.通路和回路

通路:给定有向图D中的任何一个边序列L,如果其中的任何一条边的终点,都是继之出现的边(如果存在的话)的始点,则称这样的边的序列是图G的通路。

回路:若序列L首尾节点相同,则L是回路。

13.无环图和有环图

无环图:图中没有回路。

有环图:图中有回路。

14.连通性和可达性

连通性:在无向图U中,若从顶点A到B存在通路,则称点A与B是连通的。

可达性:在有向图中,若从顶点C到D存在通路,则称C到D可达。

15.连通图和非连通图

若无向图U是平凡图,或U中任意两个顶点都是连通的,则U是连通图;否则,U是非连通图。

16.连通分支

指一个图被分成几个小块,每个小块是联通的,但小块之间不联通,那么每个小块称为联通分支。一个孤立点也是一个联通分支。

17.点割集与割点

点割集:V是一些顶点的集合,如果删除V中的所有顶点之后,G不再连通,但是对于V的任何真子集V1,删除V1后G仍然连通,则称V是点割集。

 割点:如果点割集里只有一个顶点,那么这个顶点叫做割点。

18.相关性分割

设A、B、C为有向图D中两两不相交的结点集,且A、B间的任意路径都被C阻塞,则称A、B被C相关性分割,C是A、B的切割集。

19.父结点与子结点

在有向图中,连接同一条弧的两个端点,根据弧的方向分为弧尾和弧头。有时也称弧尾结点是弧头结点的父结点,弧头结点是弧尾结点的子结点。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值