说明:我安装的是cuda8.0+cndnn7.1+pytorch1.0.1,亲测可为,不用按照官网来,官网速度太慢了,而且会断。conda会比pip好,可自动选择适合电脑环境的版本。
0.换源,换源,换源
在Anaconda中使用清华镜像源
添加清华镜像至Anaconda仓库
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
pytorch
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# for legacy win-64
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
1.安装pytorch-gpu
在cmd下运行
conda install pytorch torchvision
会自动安装适合你电脑的pytorch-gpu版本
根据提示去安装cuda和cudnn
2.安装NVIDIA驱动,CUDA,cnDNN
驱动地址:https://www.nvidia.cn/Download/index.aspx?lang=cn,选择适合自己的驱动版本
下载安装即可(默认路经),我已经装了vs2015,所以默认精简安装即可,如果有问题可以自己自定义安装取消vs选项
CUDA地址:https://developer.nvidia.com/cuda-toolkit-archive
我安装的是CUDA8.0 GA1版本(默认路经),如果下载慢,可以复制链接在迅雷中下载
cuDNN地址:https://developer.nvidia.com/rdp/cudnn-archive
下载很慢,我也没有什么好办法,解压缩得到三个文件夹
将其复制到CUDA目录下即可
3.重启电脑
1.验证NVIDIA是否安装成功:cmd:
2.看pytorch是否成功: