[LeetCode] N-Queens

13 篇文章 0 订阅
12 篇文章 0 订阅

Total Accepted: 7379 Total Submissions: 29099

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
public class Solution {
    public ArrayList<String[]> solveNQueens(int n) {
        ArrayList<String[]> list = new ArrayList<String[]>();
        int[]               path = new int[n];
        
        dfs(list, path, n, 0);
        
        return list;
    }
    
    public void dfs(ArrayList<String[]> list, int[] path, int n, int level) {
        if (level == n) {
            String[] set = new String[n];
            
            for (int i = 0; i < n; i++) {
                StringBuffer str = new StringBuffer();
                for (int j = 0; j < n; j++) {
                    if (path[i] == j)   str.append("Q");
                    else                str.append(".");
                }
                set[i] = str.toString();
            }
            
            list.add(set);
            return;
        }
        
        for (int i = 0; i < n; i++) {
            path[level] = i;
            if (check(path, level)) dfs(list, path, n, level + 1);
        }
    }
    
    public boolean check(int[] path, int level) {
        for (int i = 0; i < level; i++) {
            if ((path[i] == path[level]) || Math.abs(path[i] - path[level]) == (level - i)) return false;
        }
        
        return true;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值