数论中的逆元定义为:
设m是一个整数,a是满足(a,m)= 1 的整数,则存在唯一的整数a#,1<=a#<m,
使得 a *a# = 1( mod m);
a#称为a的逆元;
求逆元的方法,可以用扩展欧几里得算法;
sa+tm=(a,m)=1;
因此整数a#满足a# mod m=s满足a*a# = 1(mod m);
代码:
long long ext_gcd(long long a,long long b,long long &x,long long &y)
{
if (a == 0 && b == 0) return -1;
if (b == 0)
{
x = 1;
y = 0;
return a;
}
long long d = ext_gcd(b, a%b, y, x);
y -= a / b*x;
return d;
}
//求逆元素
// ax=1(mod n)
long long mod_reverse(long long a,long long n)
{
long long x, y;
long long d = ext_gcd(a,n,x,y);
if (d == 1)
return (x%n + n) % n;
else
return -1;
}