hdu 5348 MZL's endless loop

MZL's endless loop

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1370    Accepted Submission(s): 297
Special Judge


Problem Description
As we all kown, MZL hates the endless loop deeply, and he commands you to solve this problem to end the loop.
You are given an undirected graph with  n  vertexs and  m  edges. Please direct all the edges so that for every vertex in the graph the inequation  |out degree  in degree|1  is satisified.
The graph you are given maybe contains self loops or multiple edges.
 

Input
The first line of the input is a single integer  T , indicating the number of testcases.
For each test case, the first line contains two integers  n  and  m .
And the next  m  lines, each line contains two integers  ui  and  vi , which describe an edge of the graph.
T100 1n105 1m3105 n2105 m7105 .
 

Output
For each test case, if there is no solution, print a single line with  1 , otherwise output  m  lines,.
In  i th line contains a integer  1  or  0 1  for direct the  i th edge to  uivi 0  for  uivi .
 

Sample Input
  
  
2 3 3 1 2 2 3 3 1 7 6 1 2 1 3 1 4 1 5 1 6 1 7
 

Sample Output
  
  
1 1 1 0 1 0 1 0 1
题意 :给你一个无向图,问你是否能把图变为有向图,且满足每个点的出度与入度的差小于1.


解法:无向图一定能够满足条件。度数奇数的为欧拉路径的起点或终点。偶数的为欧拉路径中间点,或环上的点。


代码:

#include <stdio.h>  
#include <ctime>  
#include <math.h>  
#include <limits.h>  
#include <complex>  
#include <string>  
#include <functional>  
#include <iterator>  
#include <algorithm>  
#include <vector>  
#include <stack>  
#include <queue>  
#include <set>  
#include <map>  
#include <list>  
#include <bitset>  
#include <sstream>  
#include <iomanip>  
#include <fstream>  
#include <iostream>  
#include <ctime>  
#include <cmath>  
#include <cstring>  
#include <cstdio>  
#include <time.h>  
#include <ctype.h>  
#include <string.h>  
#include <assert.h>  
#pragma comment (linker, "/STACK:102400000,102400000")

using namespace std;

const int MAXN = 1e6+10;
const int MAXM = 1e6+10;

int n, m;
int x, y;

//
struct Edge
{
	int to, next;
	int index;
	bool flag;
}edge[MAXM];

int head[MAXM], tot;
int sum_du[MAXN];//总度数
int du[MAXN][2];//d[i][0] 入度 d[i][1]出度
int ans[MAXM];//答案

void addedge(int u, int v, int index)
{
	edge[tot].to = v;
	edge[tot].flag = false;
	edge[tot].index = index;
	edge[tot].next = head[u];
	head[u] = tot++;
}

void init()
{
	tot = 0;
	memset(head, -1, sizeof(head));
	memset(du, 0, sizeof(du));
	memset(sum_du,0,sizeof(sum_du));
	memset(ans,-1,sizeof(ans));
}
///

void dfs(int u,int ok)
{
	for (int i = head[u]; i != -1; i = edge[i].next)
	{
		if (edge[i].flag)//访问过的边  删除
		{
			head[u] = edge[i].next;
			continue;
		}
		int v = edge[i].to;
		if (u != v && du[v][ok^1] > du[v][ok])
			continue;
		/
		edge[i].flag = true;
		edge[i ^ 1].flag = true;
		if (i % 2  == 1)
			ans[i / 2] = ok ^ 1;
		else
			ans[i / 2] = ok;

		du[u][ok]++;
		du[v][ok ^ 1]++;
		head[u] = edge[i].next;//删边
		dfs(v,ok);
		break;
	}
}

int main()
{
	int t;
	scanf("%d",&t);
	while (t--)
	{
		scanf("%d %d",&n,&m);
		init();
		for (int i = 0; i < m; i++)
		{
			scanf("%d%d",&x,&y);
			addedge(x, y, i);
			addedge(y, x, i);
			sum_du[x]++;
			sum_du[y]++;
		}
		for (int i = 1; i <= n; i++)
		{
			while (du[i][0] + du[i][1] < sum_du[i])
			{
				if (du[i][0] <= du[i][1])
					dfs(i, 0);//正向走
				else
					dfs(i, 1);//反向走
			}
		}
		for (int i = 0; i < m; i++)
			printf("%d\n",ans[i]);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值