题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5492
原来公式(n+m-1)* ∑(ai - ai_ave)^2,求公式的最小值,即最小方差路径。
公式展开化简后可以得到 (n+m-1)*s1-s2
s1为ai平方和,s2为和的平方。
dp[i][j][k] 表示 到达i行,j列时,ai的和为k时的最小平方和。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
using namespace std;
const int inf = 0x3f3f3f3f;
int n, m;
int dp[32][32][2000];
int a[32][32];
int main()
{
int t, cases = 1;
scanf("%d",&t);
while (t--)
{
memset(dp, inf, sizeof(dp));
memset(a, 0, sizeof(a));
scanf("%d%d", &n, &m);
for (int i = 0;i < n;i++)
for (int j = 0;j < m;j++)
scanf("%d", &a[i][j]);
dp[0][0][a[0][0]] = a[0][0] * a[0][0];
for (int i = 0;i < n;i++)
for (int j = 0;j < m;j++)
{
if (i + 1 < n)
{
for (int k = 0;k <= 59 * 30;k++)
if (dp[i][j][k] != inf)
dp[i + 1][j][k + a[i + 1][j]] = min(dp[i + 1][j][k + a[i + 1][j]], dp[i][j][k] + a[i + 1][j] * a[i + 1][j]);
}
if (j + 1 < m)
{
for (int k = 0;k <= 59 * 30;k++)
if (dp[i][j][k] != inf)
dp[i][j + 1][k + a[i][j + 1]] = min(dp[i][j + 1][k + a[i][j + 1]], dp[i][j][k] + a[i][j + 1] * a[i][j + 1]);
}
}
int ans = inf;
for (int i = 0;i <= 59 * 30;i++)
if (dp[n-1][m-1][i]!=inf)
ans = min(ans, (n + m - 1)*dp[n - 1][m - 1][i] - i*i);
printf("Case #%d: %d\n", cases++, ans);
}
return 0;
}