Description
对数值很大、精度很高的数进行高精度计算是一类十分常见的问题。比如,对国债进行计算就是属于这类问题。
现在要你解决的问题是:对一个实数R( 0.0 < R < 99.999 ),要求写程序精确计算 R 的 n 次方(R n),其中n 是整数并且 0 < n <= 25。
现在要你解决的问题是:对一个实数R( 0.0 < R < 99.999 ),要求写程序精确计算 R 的 n 次方(R n),其中n 是整数并且 0 < n <= 25。
Input
T输入包括多组 R 和 n。 R 的值占第 1 到第 6 列,n 的值占第 8 和第 9 列。
Output
对于每组输入,要求输出一行,该行包含精确的 R 的 n 次方。输出需要去掉前导的 0 后不要的 0 。如果输出是整数,不要输出小数点。
1、实数高精度运算,转化为整型计算。由于转化后计算结果为整型,在输出的时候要控制格式,转化为小数形式;所以在转化为整型的时记录小数点位置。
2、高精度数据的存储,R转化为整型是小于1000000,且n小于等于25,故最多为150位,可用整型数组记录每一位数字,注意范围。
3、求解R的n次方,在循环累乘时,注意进位以及数组size的控制。
4、在输出是要考虑多种情况。第一,结果为小数时,尾端的0不输出,因此在要计算求得整数尾端且在小数点位置以后的0的个数;在输出时,考虑size、dotpos及trail的位置关系,当小数点位置dotpos大于size的时候,要填充0。第二,结果为整数时,要注意不要输出小数点。
5、个别情况R为0的时候,直接输出0后跳出当前循环。