其实只要想明白了状态的唯一性,也就很好写了。
状态方程很容易想到,反正数据量不大,直接四维数组保存。
d[ a ][ b ][ c ][ d ]表示从每一堆里分别拿走前a、b、c、d个能达到的最大值。
唯一性:其实只要能达到当前的状态,取过的糖果是确定的,那糖果颜色的种类和数量也就是确定的,那basket里的糖果只能是对应颜色数量为奇数的糖果,且只有一个,其余取过的糖果都在pocket里。
既然状态唯一,也就可以记忆化搜索了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <vector>
#include <sstream>
#include <iomanip>
#include <list>
#include <stack>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
typedef unsigned long long LLU;
const int maxn=45;
int d[maxn][maxn][maxn][maxn] ,col[maxn][4];
int n, ans;
void dp(int a, int b, int c, int dd, int bat, int bat_num, int num)
{
ans=max(ans, num);
if(bat_num>=5)return ;
if(d[a][b][c][dd]!=-1)return ;
d[a][b][c][dd]=0;
if(a<n)
{
int color=col[a+1][0];
if(bat & (1<<color))
dp(a+1, b, c, dd, bat ^ (1<<color), bat_num-1, num+1);
else dp(a+1, b, c, dd, bat ^ (1<<color), bat_num+1, num);
}
if(b<n)
{
int color=col[b+1][1];
if(bat & (1<<color))
dp(a, b+1, c, dd, bat ^ (1<<color), bat_num-1, num+1);
else dp(a, b+1, c, dd, bat ^ (1<<color), bat_num+1, num);
}
if(c<n)
{
int color=col[c+1][2];
if(bat & (1<<color))
dp(a, b, c+1, dd, bat ^ (1<<color), bat_num-1, num+1);
else dp(a, b, c+1, dd, bat ^ (1<<color), bat_num+1, num);
}
if(dd<n)
{
int color=col[dd+1][3];
if(bat & (1<<color))
dp(a, b, c, dd+1, bat ^ (1<<color), bat_num-1, num+1);
else dp(a, b, c, dd+1, bat ^ (1<<color), bat_num+1, num);
}
}
void solve()
{
memset(d, -1, sizeof(d));
ans=0;
dp(0, 0, 0, 0, 0, 0, 0);
cout<<ans<<endl;
}
int main()
{
while(cin>>n && n)
{
for(int i=1; i<=n; i++)
for(int j=0; j<4; j++)
cin>>col[i][j];
solve();
}
return 0;
}