【毕业设计】基于Python+Django的健康课程推荐系统(含源码)

一、项目背景

在当今社会,随着工作与生活节奏的不断加快,公众的健康意识正以前所未有的速度觉醒。人们对健康的追求已不再局限于传统的疾病治疗,而是全面转向于主动的健康管理、科学的身体锻炼与积极的心理调适。这一趋势催生了庞大的线上健康课程市场,瑜伽、正念冥想、HIIT训练、营养科学等各类课程层出不穷,满足了用户多元化、个性化的健康需求。

然而,信息的爆炸式增长也带来了显著的“信息过载”问题。面对平台上数以千计的健康课程,用户往往感到无所适从:初学者不知从何练起,有特定需求(如减脂、康复、缓解焦虑)的用户难以快速定位到最适合自己的课程。这种“选择悖论”不仅严重影响了用户的学习体验和参与粘性,更可能导致其因课程选择不当而无法达到预期效果,甚至造成运动损伤,最终放弃健康计划。对于课程提供方而言,大量优质课程因无法触达目标用户而被埋没,平台的价值未能得到最大化。

现有的通用推荐机制往往难以精准适配健康领域的特殊性。健康课程的选择高度依赖于用户的个人属性,如年龄、性别、健康目标、体能基础、兴趣偏好乃至历史行为数据。一个高效的推荐系统必须能够深刻理解这些复杂维度,进行精准的匹配。

因此,本毕业设计旨在开发一个基于Python和Django的健康课程推荐系统。本项目不仅具有重要的理论实践价值,能够将机器学习、Web开发与数据库技术进行综合应用,更具备明确的现实意义。系统将通过构建用户画像与分析课程标签,利用协同过滤等智能算法,为不同用户生成高度个性化的课程推荐列表,实现“千人千面”的精准服务。这不仅能有效提升用户的学习效率与满意度,帮助其建立可持续的健康习惯,同时也能显著提高平台课程的完课率与用户留存,为在线健康产业的智能化发展提供一个切实可行的技术解决方案。

二、技术介绍

技术栈
后端框架: Django 3.x/4.x
前端技术: HTML5, CSS3, JavaScript, Bootstrap
数据库: PostgreSQL/MySQL
推荐算法: 协同过滤/内容相似度

本健康课程推荐系统采用一套成熟、稳定且高效的技术组合,确保了系统的健壮性、可扩展性及良好的用户体验。

1. 后端架构:Django 3.x/4.x
系统后端核心基于Django这一Python领域重量级Web框架。我们选用其长期支持的3.x或4.x版本,以利用其卓越的安全性、高度的可扩展性以及丰富的内置功能。Django奉行的“约定优于配置”理念与MTV(Model-Template-View)设计模式,为我们构建清晰的项目结构奠定了基础。其强大的对象关系映射(ORM) 组件,允许我们使用纯Python代码来定义数据模型(如用户、课程、行为记录),从而与数据库进行高效、安全的交互,无需编写冗长的SQL语句,同时有效防范了SQL注入等常见攻击。此外,Django自带的用户认证系统、后台管理界面(Admin)以及表单处理机制,为我们快速实现用户登录、课程管理和数据维护提供了极大便利,显著提升了开发效率。

2. 前端技术:HTML5, CSS3, JavaScript, Bootstrap
前端界面层采用经典的Web开发技术组合。HTML5负责构建语义化的页面结构,CSS3则用于实现现代化的布局与动画效果,提升视觉体验。为了在短时间内构建出美观、一致且响应式的用户界面,我们引入了Bootstrap前端框架。它提供了丰富的预定义组件和栅格系统,能够确保系统在从桌面到移动设备的各种屏幕尺寸上都能完美显示。页面上的动态交互逻辑,如表单验证、课程筛选、异步加载等,则由原生JavaScript实现,确保了前端交互的流畅性与灵活性。

3. 数据持久层:PostgreSQL/MySQL
在数据库选型上,我们选用关系型数据库PostgreSQLMySQL。两者均为久经考验的开源数据库,能够提供稳定的事务支持与强大的数据查询能力。考虑到系统需要存储结构化的用户信息、复杂的课程元数据(如标题、教练、难度等级、标签)以及用户-课程交互行为数据(浏览、收藏、完成进度),关系型模型是理想选择。这些数据不仅是业务运行的基础,更是推荐算法进行模型训练的燃料。

4. 核心推荐算法:协同过滤与内容相似度
系统的智能化核心由推荐算法驱动。我们计划实现并融合两种主流算法:

  • 协同过滤:通过分析大量用户的历史行为数据(如评分、点击),发现用户之间的相似性或课程之间的关联性。从而能够实现“与你兴趣相似的用户也喜欢这些课程”或“学习了A课程的用户大多也学习了B课程”的推荐,有效挖掘用户的潜在兴趣。

  • 内容相似度:此方法侧重于课程本身的属性。通过分析课程的标签、描述、教练、难度等特征,计算课程之间的内容相似度。当用户对某门课程表现出兴趣时,系统会推荐内容特征上与之高度相似的其他课程。

这种混合策略能够兼顾用户群体行为与课程本身特性,在不同场景下取长补短,共同为用户提供更精准、更多样化的个性化课程推荐服务。

三、功能介绍

项目概述
这是一个基于Django框架的健康课程推荐系统,旨在为用户提供个性化的健康课程学习体验。系统包含用户管理、课程管理、智能推荐和社交互动等功能模块。

系统功能
1. 用户认证模块
用户注册与登录
个人信息管理
密码重置功能
2. 课程管理模块
课程分类管理
课程内容管理
课程发布与更新
课程搜索与筛选
3. 学习交互模块
课程收藏与学习记录
课程评分与评论
学习进度跟踪
4. 智能推荐模块
基于用户行为的课程推荐
基于内容的相似课程推荐
热门课程推荐

本项目旨在构建一个基于Django框架的健康课程推荐系统,以应对信息过载时代用户寻找合适健康课程的难题。该系统不仅是一个简单的课程聚合平台,更是一个集个性化推荐、学习管理、社区互动于一体的综合性学习社区。其核心目标是利用智能算法,分析用户的个性化偏好与行为模式,从海量的瑜伽、冥想、健身、营养学等课程中,精准筛选并推荐最匹配用户需求的内容,从而显著提升用户的学习效率、参与度与满意度,最终助力其养成科学、持续的健康生活习惯。

系统功能详述

1. 用户认证与管理模块
此模块是系统安全的基石。它提供了完整的用户注册与登录流程,确保账户访问的安全性。用户登录后,可以在个人中心进行完善的个人信息管理,如设置健康目标、偏好标签、头像等,这些数据是构建用户画像、实现精准推荐的重要依据。同时,系统集成了密码重置功能,通过邮箱验证等方式,保障用户在忘记密码时能安全、便捷地恢复账户访问。

2. 课程管理与发现模块
这是平台内容的组织核心。管理员通过后台对课程进行分类管理(如按运动类型、难度等级划分)和课程内容管理(包括课程视频、图文介绍的上传与编辑),实现课程的发布与更新。面向用户,系统提供了强大的课程搜索与筛选功能,用户可以通过关键词搜索,或根据分类、难度、热度等多维度条件快速定位感兴趣的课程,实现高效的内容发现。

3. 学习交互与社交模块
此模块旨在提升用户粘性与社区活力。系统会自动跟踪用户的学习进度,并记录课程收藏与学习记录,为推荐算法提供直接的数据输入。同时,我们设计了课程评分与评论体系,用户学完后可以发表自己的看法和评分,这些UGC(用户生成内容)不仅为其他用户提供了参考,也极大地丰富了课程的维度,增强了平台的互动性和可信度。

4. 智能推荐模块
这是本系统的核心价值与特色所在。推荐模块采用混合策略:

  • 基于用户行为的协同过滤推荐:通过分析用户群体的收藏、评分、学习记录等行为,发现用户之间的相似性,从而将“相似用户”喜欢的课程推荐过来。

  • 基于内容的相似课程推荐:通过分析课程本身的标签、分类、描述等元数据,计算课程间的相似度。当用户对某课程感兴趣时,系统会自动推荐内容上与之高度相似的其他课程。

  • 热门课程推荐:作为一个有效的补充和冷启动策略,系统会根据全局的浏览量、收藏量等数据,向新用户或数据稀疏的用户推荐当前最受欢迎的热门课程,确保推荐列表的多样性和吸引力。

四、系统实现

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源码设计调试QQ+821826880

感谢友友们的点赞关注和评论

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值