一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2
条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if(obstacleGrid.empty())
return 0;
int row=obstacleGrid.size();
int col=obstacleGrid[0].size();
int dp[100][100];
for(int i=0;i<row;++i)
{
for(int j=0;j<col;++j)
{
//注意边界上的点
if(obstacleGrid[i][j]==1)//若该点有障碍物,则不可到达
dp[i][j]=0;
else if(i==0&&j==0)//出发点
dp[i][j]=1;
else
if(i==0&&j>0)//第一行上的点
dp[i][j]=dp[i][j-1];
else
if(i>0&&j==0)//第一列上的点
dp[i][j]=dp[i-1][j];
else//其他点
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[row-1][col-1];
}
};