Abstract
生物学会议ICMICCAI 2015相关的文章,主要是针对生物学影像进行分割。本论文考虑到医学影像往往比较少,而深度学习通常需要大量的图像。因此本文提出采用很强的数据增强提高数据的利用效率;提出U型网络模型——近似对称的Conv + Deconv.最终在三个生物学数据集上达到了当时最好的性能。
Movitation
当今生物影像分割的数据太少,现有的滑动窗口的做法消耗时间长,针对这个问题提出了U-Net
Framework
本文主要针对的是两个问题进行处理
一个数据少,解决方法是使用覆盖砖块的策略,如下图
和数据增强方法,数据增强使用弹性变形的方法,通过在一个3*3的粗糙网格中使用一个随机位移向量产生一个平滑的变形,位移量从高斯分布中取样,高斯分布有十个像素的标准差,每个像素的偏移通过bicubic interpolation获得.另一个问题是相同物体的间隙不容易分割出来,采用加权的策略