[U-Net] U-Net: Convolutional Networks for Biomedical Image Segmentation

Abstract

生物学会议ICMICCAI 2015相关的文章,主要是针对生物学影像进行分割。本论文考虑到医学影像往往比较少,而深度学习通常需要大量的图像。因此本文提出采用很强的数据增强提高数据的利用效率;提出U型网络模型——近似对称的Conv + Deconv.最终在三个生物学数据集上达到了当时最好的性能。

Movitation

当今生物影像分割的数据太少,现有的滑动窗口的做法消耗时间长,针对这个问题提出了U-Net

Framework

1
本文主要针对的是两个问题进行处理

  • 一个数据少,解决方法是使用覆盖砖块的策略,如下图
    2
    和数据增强方法,数据增强使用弹性变形的方法,通过在一个3*3的粗糙网格中使用一个随机位移向量产生一个平滑的变形,位移量从高斯分布中取样,高斯分布有十个像素的标准差,每个像素的偏移通过bicubic interpolation获得.

  • 另一个问题是相同物体的间隙不容易分割出来,采用加权的策略
    3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值