
CUDA、cuDNN、PyTorch:深度学习环境搭建秘籍
文章平均质量分 89
历经数百次配置调试,踩过无数坑,硬盘格式化都成 “家常便饭”,终得 CUDA、cuDNN、PyTorch 等深度学习工具配置与使用的独家心得。本专栏从环境搭建细节讲起,深入剖析安装、版本适配、性能优化,结合实战项目分享加速技巧,助你避开弯路,快速掌握深度学习开发核心能力。
AITechLab
全媒体运营师/百度智能云AIGC资深认证工程师/讯飞&Datawhale Prompt Engineer/阿里魔塔社区&Datawhale Agent Engineer/亚马逊云科技AIGC技术开发能力认证/亚马逊云科技AIGC商业应用能力认证/工信部AIGC技术应用能力-通用办公能力认证/工信部AIGC技术应用能力-美术设计能力认证/等
展开
-
升级 CUDA Toolkit 12.9 与 cuDNN 9.9.0 后验证指南:功能与虚拟环境检测
在深度学习领域,CUDA、cuDNN 和 torch 之间具备向下兼容特性。这得益于它们的自动适配安装机制,会依据当前环境以及已有库状况,安装最合适版本,所以开发者无需因验证版本号与安装版本号不一致而忧心。目前,torch 官方尚未发布支持 CUDA 12.9 的版本。当在 Windows 主系统完成 CUDA Toolkit 12.9 与 cuDNN 9.9.0 升级后,若未在 conda、virtualenv 等虚拟环境中另行安装适配新版本的库,验证时会呈现虚拟环境中原先的版本信息。原创 2025-05-05 00:02:25 · 3208 阅读 · 0 评论 -
新系统安装CUDA12.8卡在installing Nsight visual studio edtion界面不动的解决方案
情景回顾:安装新系统后,下载安装最新Visual Studio 2022后开始安装CUDA12.8,结果一直卡在CUDA程序的这个界面,尝试了各种办法,重启无数次,最后无奈只有尝试了降级Visual Studio 2022版本号才得以继续。只有降级Visual Studio 2022的版本号到17.13以下,才能正常安装,这是因为官方已经发现17.3版本和CUDA12.8确实存在冲突问题。降级到17.9后安装正常,注意,需要卸载新的版本后重启电脑,然后再安装特定的版本(版本号<17.13)。原创 2025-02-27 11:59:07 · 880 阅读 · 0 评论 -
CUDA Toolkit 12.9 与 cuDNN 9.9.0 发布,带来全新特性与优化
NVIDIA 近日发布了 CUDA Toolkit 12.9,为开发者提供了一系列新功能和改进,旨在进一步提升 GPU 加速应用的性能和开发效率。CUDA Toolkit 是创建高性能 GPU 加速应用的关键开发环境,广泛应用于从嵌入式系统到超级计算机的各种计算平台。原创 2025-05-04 11:29:02 · 1643 阅读 · 0 评论 -
“100% 成功的 PyTorch CUDA GPU 支持” 安装攻略
通过严格按照上述步骤操作,特别是使用 PyTorch 官方网站生成的安装命令,我们能够确保torch和torchaudio三个包的版本兼容性,从而 100% 成功安装带有 CUDA 12.8 GPU 支持的 PyTorch。在安装过程中,要仔细检查每个步骤,根据不同的项目需求准确判断并配置安装选项,确保满足先决条件。同时,优先选择pip或conda从官方网站获取命令进行安装,避免使用不推荐的本地安装方式。希望这份攻略能够帮助我们顺利搭建起高效的深度学习开发环境。原创 2025-04-30 18:52:29 · 2555 阅读 · 0 评论 -
UniGetUI 使用指南:轻松管理 Windows 软件(包括CUDA)
UniGetUI(前身为 WingetUI)是一款专门为 Windows 10(x64)和 Windows 11 系统打造的图形化包管理器界面工具。它集成了 Winget、Scoop、Chocolatey、Npm、Pip、Cargo、vcpkg、.NET Tool 和 PowerShell 等多种常用包管理器的功能,为用户提供了便捷的软件管理体验,无需记忆复杂的命令参数,即可轻松完成软件的搜索、安装、更新和卸载等操作。以下是详细的下载与使用教程。原创 2025-05-05 16:38:05 · 920 阅读 · 0 评论 -
验证PyTorch深度学习环境Torch和CUDA还有cuDNN是否正确配置的命令
工作记录python以进入python环境,如果是虚拟环境则需要先激活要验证的虚拟环境。这段 Python 脚本主要用于检查 PyTorch 深度学习环境的配置信息,并进行简单的张量运算,下面为详细解释它们的具体作用。原创 2025-03-13 12:25:09 · 1583 阅读 · 0 评论 -
在WSL2-Ubuntu中安装CUDA12.8、cuDNN、Anaconda、Pytorch并验证安装
记录工作提示:整个过程最好先开启系统代理,也可以用镜像源,确保有官方发布的最新特性和官方库的完整和兼容性支持。期间下载会特别慢,需要在系统上先开启代理,然后WSL设置里打开网络模式“Mirrored”,以设置WSL自动使用主机上的代理网络。【WLS2怎么设置网络自动代理 - CSDN App】https://blog.csdn.net/u014451778/article/details/146073726?原创 2025-03-07 11:13:04 · 7194 阅读 · 9 评论 -
新!在 podman-machine-default 中安装 CUDA、cuDNN、Anaconda、PyTorch 等并验证安装
在 Windows 系统开发环境中,Podman Desktop 凭借强大的容器管理与 WSL-Linux 子系统集成能力备受开发者关注。其中,podman-machine-default 是 Podman Desktop 安装后自带的默认 WSL-Fedora 子系统,支持与显卡通信,可用于搭建深度学习环境及部署 AI 项目。解锁新技能!Windows 11 借助 WSL - Linux 部署 GitHub 项目全攻略_wsl github-CSDN博客。原创 2025-04-25 23:57:12 · 1244 阅读 · 0 评论