题意:
给一棵树,数的节点有权值,求树的一个最大子集,子集要求如下:
1.子集是连通的
2.对节点按照权值排序后,排序后每对相邻节点u1、u2,在原图中的u1->u2的路径上的权值都要比u1小(不包括u1u2)。
官方思路:
既然每条路径上的权值都比端点小,那么使边有向从小权值指向大权值,从小权值点进行dfs搜索即可。
注意超时和爆栈。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<stdio.h>
#include<math.h>
#include <string>
#include<string.h>
#include<map>
#include<set>
#include<vector>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define eps 1e-13
#define inf 0x3f3f3f3f
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define ll long long int
#define mod 998244353
#define maxn 500005
#define maxm 100005
int f[maxn];
int n,res[maxn],maxres;
int visit[maxn];
vector<int> vec[maxn];
int dfs(int x){
if(res[x]) return res[x];
res[x]=1;
for(int i=0;i<vec[x].size();i++)
{
res[x]+=dfs(vec[x][i]);
}
return res[x];
}
int main()
{
while(~scanf("%d",&n)){
for(int i=1;i<=n;i++)
{
rd(f[i]);
vec[i].clear();
}
int x,y;
for(int i=1;i<n;i++)
{
rd2(x,y);
if(f[x]<f[y]) vec[x].push_back(y);
else vec[y].push_back(x);
}
memset(res,0,sizeof(res));
maxres=0;
for(int i=1;i<=n;i++)
{
// if(res[i]>maxres) maxres=res[i];
if(res[i]) continue;
dfs(i);
if(res[i]>maxres) maxres=res[i];
}
printf("%d\n",maxres);
}
return 0;
}