hdu-5325 Crazy Bobo (2015 Multi-University Training Contest 3)

题意:

给一棵树,数的节点有权值,求树的一个最大子集,子集要求如下:

1.子集是连通的

2.对节点按照权值排序后,排序后每对相邻节点u1、u2,在原图中的u1->u2的路径上的权值都要比u1小(不包括u1u2)。

官方思路:


既然每条路径上的权值都比端点小,那么使边有向从小权值指向大权值,从小权值点进行dfs搜索即可。

注意超时和爆栈。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<stdio.h>
#include<math.h>
#include <string>
#include<string.h>
#include<map>
#include<set>
#include<vector>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define eps 1e-13
#define inf 0x3f3f3f3f
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define ll long long int
#define mod 998244353
#define maxn 500005
#define maxm 100005
int f[maxn];
int n,res[maxn],maxres;
int visit[maxn];
vector<int> vec[maxn];
int dfs(int x){
    if(res[x]) return res[x];
    res[x]=1;
    for(int i=0;i<vec[x].size();i++)
        {
            res[x]+=dfs(vec[x][i]);
        }
    return res[x];
}
int main()
{
    while(~scanf("%d",&n)){
        for(int i=1;i<=n;i++)
            {
                rd(f[i]);
                vec[i].clear();
            }
            int x,y;
            for(int i=1;i<n;i++)
            {
                rd2(x,y);
                if(f[x]<f[y]) vec[x].push_back(y);
                else vec[y].push_back(x);
            }
          memset(res,0,sizeof(res));
            maxres=0;
            for(int i=1;i<=n;i++)
            {
               // if(res[i]>maxres) maxres=res[i];
                if(res[i]) continue;
                dfs(i);
                if(res[i]>maxres) maxres=res[i];
            }
            printf("%d\n",maxres);
    }
    return 0;
}


内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值