小猴子下落
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
有一颗二叉树,最大深度为D,且所有叶子的深度都相同。所有结点从左到右从上到下的编号为1,2,3,·····,2的D次方减1。在结点1处放一个小猴子,它会往下跑。每个内结点上都有一个开关,初始全部关闭,当每次有小猴子跑到一个开关上时,它的状态都会改变,当到达一个内结点时,如果开关关闭,小猴子往左走,否则往右走,直到走到叶子结点。
一些小猴子从结点1处开始往下跑,最后一个小猴儿会跑到哪里呢?
-
输入
- 输入二叉树叶子的深度D,和小猴子数目I,假设I不超过整棵树的叶子个数,D<=20.最终以 0 0 结尾 输出
- 输出第I个小猴子所在的叶子编号。 样例输入
-
4 2 3 4 0 0
样例输出
-
12
7
-
这道题的开关变化是在每一个小猴子到达该开关之前变过来的,而不是在上一个小猴子经过之后立马就改变开关的状态。
-
#include <iostream> #include <fstream> #include <memory.h> #include <math.h> using namespace std; int a[1000005]; int main(void) { // fstream cin("题目63.txt"); int D,I; while(cin>>D>>I&&(D!=0||I!=0)) { int d=pow(2,D)-1; memset(a,0,sizeof(a)); int k; for(int i=1;i<=I;i++) { k=1; // a[1]=a[1]?0:1; for(;;) { a[k]=!a[k];//在当前的小猴子到达的前一时刻改变状态。 k=a[k]?(2*k):(2*k+1); // a[int(k/2)]=a[int(k/2)]?0:1; if(k>d) break; } } cout<<int(k/2)<<endl; } return 0; }