摘要
许多新出的目标检测器都表现出优秀的性能,通多使用三思而后行的机制进行检测。在本文中,我们探索了这个机制在设计目标检测骨干中。在宏观层面,我们提出了递归特征金字塔,它包含来自特征金字塔的额外反馈连接进入自下而上的骨干层。在微观层面,我们提出了可切换的膨胀卷积,它包含不同膨胀卷积率的特征,收集结果使用开关功能,将它们的结果结合,就是当前的检测器,它极大提高了目标检测的性能。在coco数据集上,该检测器实现了最好的54.7的框目标检测效果,实现了47.1的掩码实例分割识别效果,和49.6的全景分割识别效果。代码是公开有效的。