DetectoRS: Detecting Objects with Recursive Feature Pyramidand Switchable Atrous Convolution

摘要

许多新出的目标检测器都表现出优秀的性能,通多使用三思而后行的机制进行检测。在本文中,我们探索了这个机制在设计目标检测骨干中。在宏观层面,我们提出了递归特征金字塔,它包含来自特征金字塔的额外反馈连接进入自下而上的骨干层。在微观层面,我们提出了可切换的膨胀卷积,它包含不同膨胀卷积率的特征,收集结果使用开关功能,将它们的结果结合,就是当前的检测器,它极大提高了目标检测的性能。在coco数据集上,该检测器实现了最好的54.7的框目标检测效果,实现了47.1的掩码实例分割识别效果,和49.6的全景分割识别效果。代码是公开有效的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值