电机控制技术

三相永磁同步电机转子为永磁体,三相通电时电机定子磁场是三相交流电流产生磁场的叠加,涉及到三个磁场耦合,分析起来比较困难。坐标变换理论可降低电机方程的复杂性。对采样电流进行坐标变换实现三轴(Ia,Ib,Ic)到两轴(I????,I????),两轴(I????,I????)到动轴(Id,Iq)的变换,就可以完成磁链及转矩的解耦控制。1.坐标变换1.1从三相静止坐标系(a-b-c)到两相静止坐标系(α,β)的变换...
摘要由CSDN通过智能技术生成

三相永磁同步电机转子为永磁体,三相通电时电机定子磁场是三相交流电流产生磁场的叠加,涉及到三个磁场耦合,分析起来比较困难。坐标变换理论可降低电机方程的复杂性。对采样电流进行坐标变换实现三轴(Ia,Ib,Ic)到两轴(I𝛼,I𝛽),两轴(I𝛼,I𝛽)到动轴(Id,Iq)的变换,就可以完成磁链及转矩的解耦控制。

1.坐标变换

1.1 从三相静止坐标系(a-b-c)到两相静止坐标系(α,β)的变换

 三相交流电机绕组轴分别是A,B,C,彼此之间互差120度空间电角度,构成一个A-B-C三相坐标系。空间上任一矢量在三个坐标系上的投影代表了该矢量在三个绕组上的分量。两相绕组也能旋转磁场,故三相绕组与两相绕组可以等效,数学上用两相直角坐标系描述比较简便。所以定义一个两相静止坐标系,即α-β坐标系。它的α轴与三相定子坐标系A轴重合,β轴逆时针超前α轴90度电角度。

 交流电机三相对称的静止绕组 A、B、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F,它在空间呈正弦分布,以同步转速\omega(即电流的角频率)顺着 A-B-C 的相序旋转。假定一个两相静止绕组α和 β,α轴与A轴重合,β轴α轴相互垂直,两相绕组中通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。两个旋转磁动势大小和转速都相等时,可以完全等效。

三相绕组坐标系(a,b,c)与两相绕组坐标系(α,β)都是静止坐标,分别对应的交流电流为i_{a},i_{b},i_{c}i_{\alpha },i_{\beta }。设三相绕组的有效匝数为N3,两相绕组的有效匝数为N2,各相的磁动势为匝数与该相电流的乘积,其空间矢量均位于有关相的坐标轴上。

 

                                 

要保证三相绕组与两相绕组中产生磁动势相同,通过上图的向量分解和投影,不难得出:

                                             \left\{\begin{matrix} N_{2}i_{\alpha } = N_{3}i_{a} - N_{3}i_{b}cos\frac{\pi }{3} - N_{3}i_{c}cos\frac{\pi }{3}\\ N_{2}i_{\beta } = N_{3}i_{b}sin\frac{\pi }{3} - N_{3}i_{c}sin\frac{\pi }{3} \end{matrix}\right.

写成矩阵形式:

                                         \begin{bmatrix} i_{\alpha }\\ i\beta \end{bmatrix}=\frac{N_{3}}{N_{2}}\begin{bmatrix} 1 & -\frac{1}{2}& -\frac{1}{2}\\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}\begin{bmatrix} i_{a}\\ i_{b} \\ i_{c} \end{bmatrix}

变换前后总功率不变,所以  \frac{N_{3}}{N_{2}} = \sqrt{\frac{2}{3}}

 

1.2 从两相静止坐标系(α,β)到两相旋转坐标系(d,q)的变换

(α,β)坐标系是静止的,再引入一个旋转坐标系(d,q),它以角速度\omega旋转,那么在(d,q)轴绕组中通以直流电流,将产生一个旋转磁动势,与静止的(α,β)轴中角频率为\omega的交流电流产生的旋转磁动势相同。转子坐标系d 轴位于转子磁链轴线上,q 轴逆时针超前d 轴90 度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d 轴是转子磁极的轴线。

                              

由图可见,N2被约去,i_{\alpha },i_{\beta }i_{d},i_{q}存在如下关系:

                                 \begin{bmatrix} i _{d}\\ i _{q} \end{bmatrix} = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} i _{\alpha }\\ i _{\beta } \end{bmatrix}

                                \begin{bmatrix} i _{\alpha }\\ i _{\beta } \end{bmatrix}= \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} i _{d}\\ i _{q} \end{bmatrix}

 

总结起来,电机控制中用到的三种变换:

从三相定子坐标系(A,B,C 坐标系)变换到静止坐标系(α,β 坐标系)的关系式为:
\begin{bmatrix}\phi _{\alpha } \\ \phi_{\beta } \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & \frac{\sqrt{3}}{2}& -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \phi _{a}\\\phi _{b} \\ \phi _{c} \end{bmatrix}          —— Clarke变换

从两相静止坐标系(α,β 坐标系)变换到两相旋转坐标系(d,q坐标系)的关系式为:

\begin{bmatrix} \phi _{d}\\ \phi _{q} \end{bmatrix} = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} \phi _{\alpha }^{}\\ \phi _{\beta } \end{bmatrix}                   —— Park变换

从两相旋转坐标系(d,q 坐标系)变换到两相静止坐标系(α,β 坐标系)的关系式为:

\begin{bmatrix} \phi _{\alpha }\\ \phi _{\beta } \end{bmatrix}= \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} \phi _{d}\\ \phi _{q} \end{bmatrix}                  —— Park逆变换

 

 

2.SVPWM调制技术

SVPWM是空间矢量脉宽调制(Space Vector Pulse Width Modulation)的简称,SVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,

  • 3
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值