排序也是一种基础,让我们来看看,此外这里都是默认升序排序。
冒泡排序
假设数组v大小为n,v[i]与v[i+1]比较,如果v[i]大就交换,第一趟循环结束,v[n-1]必定为最大,第二趟v[n-2]必定第二大,以此类推
void bubble_sort(std::vector<int>& v)
{
for (size_t i = v.size(); i > 1; i--)
{
size_t count = 0;
for (size_t j = 0; j < i - 1; j++)
{
if (v[j] > v[j + 1])
swap(v, j, j + 1);
else
count++;
}
if (count == i - 1) //计数器记录无交换次数,如果等于当前趟待排个数则表示已排序完成
break;
}
}
void swap(std::vector<int>& v, size_t src, size_t dst)
{
int temp = v[src];
v[src] = v[dst];
v[dst] = temp;
}
插入排序
v[i]与v[i-1]比较,如果v[i]小,交换,然后v[i-1]与v[i-2]比较,类推,直到比前一个大结束。
void insertion_sort(std::vector<int>& v)
{
for (size_t i = 1; i < v.size(); i++)
{
for (size_t j = i; j > 0 && v[j] < v[j-1]; j--)
{
swap(v, j, j - 1);
}
}
}
希尔排序
希尔排序只是改变排序对象,使用的方法还是和上面两个一样,都是朝前或朝后比较然后交换。首先,希尔排序需要一个增量序列,比如Hibbard增量序列,2^k-1。比如1-3-7-15,首先v[i]与v[i+15]比较,然后和前面一样,只不过步长不是1是15,然后第二趟循环就是v[i]与v[i+7],以此类推。排序效率与增量序列的选择关系比较大。
void shell_sort(std::vector<int>& v)
{
std::vector<int> hibbardVec;
hibbardVec = hibbard(5);
for (int i = hibbardVec.size()-1; i >= 0; i--)
shell_sort(v, hibbardVec[i]);
}
void shell_sort(std::vector<int>& v, size_t k)
{
if (k > v.size())
return;
for (size_t n = v.size() / k; n > 1; n--)
{
int count = 0;
for (size_t i = 0; i < n-1; i++)
{
if (v[i] > v[i + k])
swap(v, i, i + k);
else
count++;
}
if (count == n - 1)
break;
}
}
std::vector<int> hibbard(int k)
{
std::vector<int> v;
v.resize(k);
for (size_t i = 1; i <= v.size(); i++)
v[i-1] = (int)std::pow(2, i) - 1;
return v;
}
堆排序
因为堆的根节点总是最大值或最小值,所以如果能把数据放在堆里面,每次取根节点依次排好就行。堆的构造可以参考大小堆的实现(C++)
void heap_sort(std::vector<int>& v)
{
BinaryTreeNode<int> *p = InitHeap(v, MIN);
for (size_t i = 0; i < v.size(); i++)
v[i] = tree::DeleteHeap(p, MIN);
delete p;
}
归并排序
这是一种自下而上的方法,首先对最小规模子集排序,也就是两两之间比较,然后向上合并
这个用递归是比较好实现的,向下递归就好。如果要使用循环实现可以使用类似前面的增量序列,我们可以发现每次循环,排序子集都是2^k大小,我们借此设置步长的增加。
void merge_sort(std::vector<int>& v)
{
int k = 0;
int stride = 0;
int n = v.size();
if (n < 2)
throw std::exception("数组小于2无法排序");
std::vector<int> _v;
_v.resize(n);
while ((stride=(int)pow(2,k)-1) < n) {
int start = 0;
while (start < n) {
int ls = start;
int le = ls + stride;
int rs = le + 1;
int re = rs + stride;
if (re > n-1) {
if (rs < n)
merge_sort(v, ls, le, rs, n - 1, _v);
break;
}
merge_sort(v, ls, le, rs, re, _v);
start = re + 1;
}
k++;
}
}
//ls为left start,le为left end
void merge_sort(std::vector<int>& v, int ls, int le, int rs, int re, std::vector<int>& _v)
{
int start = ls;
int begin = ls;
int end = re;
while ((ls <= le && rs <= re)) {
if (v[ls] > v[rs]) {
_v[start] = v[rs];
rs++;
}
else
{
_v[start] = v[ls];
ls++;
}
start++;
}
while (ls <= le) {
_v[start] = v[ls];
ls++;
start++;
}
while (rs <= re) {
_v[start] = v[rs];
rs++;
start++;
}
vec_copy(_v, v, begin, end);
}
//复制指定范围
void vec_copy(std::vector<int> &src, std::vector<int> &dst, int start, int end)
{
for (int i = start; i <= end; i++)
dst[i] = src[i];
}
这里写的复杂了点,用了4个范围参数,但是比较好理解,当然数组复制的地方使用内存地址copy会快些,但是这样比较好调试。
快速排序
为什么叫快速排序,因为它在一般情况下,也就是不会拿一个已经排序的数据再去走一遍,这种时候快速排序是比较蠢的,还得走一遍。一般情况下,它的时间复杂度上界是比较低而且稳定的,可以达到NlogN的等级。和上面的有点类似,但快速排序是一种自上而下的方法。它首先选定一个元素,然后找出比它小的全部放一起,比它大的全部放一起,然后递归处理子集,最后当子集大小为2时,也就全部有序了。但是这个元素选取也比较重要,从半分查找我们可以看出,如果想要效率最快,我们必须靠近中点。常见的是选取首中尾三个元素的中值作为锚点。
首先我们定义一个结构用于保存数组子集范围
struct Range
{
int begin;
int end;
Range(int b,int e) {
begin = b;
end = e;
}
};
然后使用队列保存子集,循环处理
void quick_sort(std::vector<int>& v)
{
std::queue<Range> q;
Range r(0, v.size() - 1);
q.push(r);
while (!q.empty()) {
Range _r = q.front();
q.pop();
int mid = quick_sort(v, _r.begin, _r.end);
if (mid != -1) {
Range lr(_r.begin, mid-1);
Range rr(mid+1, _r.end);
q.push(lr);
q.push(rr);
}
}
}
int quick_sort(std::vector<int>& v, int begin, int end)
{
int flag = end - begin;
if (flag < 2) {
if (v[begin] > v[end])
swap(v, begin, end);
return -1;
}
int pvt = pivot(v, begin, end);
int smaller = begin;
int bigger = end - 2;
while (true) {
while ((v[smaller] <= v[pvt]) && (smaller!=pvt))
smaller++;
while (v[bigger] >= v[pvt])
bigger--;
if (smaller > bigger)
break;
swap(v, smaller, bigger);
}
swap(v, pvt, smaller);
return smaller;
}
int pivot(std::vector<int>& v, int begin, int end)
{
int mid = (begin + end) / 2;
if (v[begin] > v[mid])
swap(v, begin, mid);
if (v[begin] > v[end])
swap(v, begin, end);
if (v[mid] > v[end])
swap(v, mid, end);
swap(v, mid, end - 1); //把中值存放在倒数第二位置,便于后面排序
return end - 1;
}
至于表排序与基数排序,这两者更多的是应用的方式,而不是算法,这里就不讨论了。