数据结构-- 向量--插值查找

我们来看一下插值查找。

本页内容

    1.插值查找原理

    2.代码实现

    3.总结评价

1.插值查找原理

          插值查找的前提是有序数列元素的值是成线性增长的。对于大多数有序数列来说,这前提是可以成立的。我们不妨假设它就是成立的,那样,当我们知道一个要查找值的大小后。就可以根据数列线性增长的性质,求出要查找的值在数列中的大概位置。比如说在数列A[lo,hi)中查找e。我们设e的下标为mi。由于数列线性增长,我们不难得到这个等式:

          

进而得出:

          

我们可求出mi的值,以它为轴点,可以极大的提高查找的收敛速度。说到这里,大家也都明白了,其实插值查找就是更准的二分查找而已。

2.代码实现

#include<iostream>
using namespace std;
int InterpolationSearch(int *A,int e,int lo,int hi)
{
	while(lo<hi)
	{
		int mi=lo+(hi-lo-1)*(e-A[lo])/(A[hi-1]-A[lo]);//获取查找轴点 
		if(mi>=10)//排除越界情况 
		{
			return -1;
		}
		if(e<A[mi])
		{
			hi=mi;//深入左侧[lo,hi) 
		}
		else if(e>A[mi])
		{
			lo=mi+1;//深入右侧[mi+1,hi) 
		}
		else
		{
			return mi;//命中 
		}
	}
	return -1;//查找失败 
}
int main()
{
	/*******插值查找测试******/
	int a[10];
	cout<<"测试数组:";
	for(int i=0;i<10;i++)
	{
		a[i]=(float)(i);
		cout<<a[i]<<" "; 
	}
	cout<<endl;
	cout<<"查找结果:" ;
	for(int i=0;i<13;i++)
	{
		cout<<InterpolationSearch(a,i-1,0,10)<<" "; 
	} 
	cout<<endl;
	/***************************/
	 
} 
运行结果:

         

3.总体评价

    插值查找比二分查找有所改进,但是其效率提高的并不明显(除非所查找的数列特别庞大,它的用处才能显现)。算法中引用了乘法和除法,增加了额外的消耗。如果所需查找的数列不大,由于每次深入都要进行乘除操作,用此算法可能得不偿失。所以,在实际应用中,该算法常常与二分查找算法联合使用,来处理较大的数据:用插值查找将数据缩小到一定范围,再用二分查找完成查询。



想要学习更多关于向量的知识,请点击!!

   

          

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值