caffe
kangdk
追本溯源
展开
-
caffe tutorial 之 Loss
本文基于Caffe Tutorial 之 Loss编写。在Caffe中,如同大多数机器学习算法一样,学习是通过损失(loss,也被称为误差、代价、或者目标函数)进行驱动。损失函数将参数设置(即,当前网络权重)映射为一个预示参数好坏程度的标量来指定学习目标。因此,学习的目标就是寻找一组使损失函数取值最小的参数值。Caffe中,损失通过网络的前向传播进行计算。每层从输入(低层)中获取数据,同时翻译 2017-07-12 16:52:45 · 460 阅读 · 0 评论 -
Caffe tutorial 之 前向与反向传播
本文参考Forward and Backward。前向与反向传播前向与后向传播是网络中重要的计算部分。 接下来以简单的逻辑回归分类器为例介绍。前向传播用于计算推理过程中给定输入的输出。在前向传播中,Caffe将每层的计算进行组合从而得到模型所代表的“函数”。此过程由底向上进行。 数据x经过全连接层(内积层)生成g(x)g(x),之后通过softmax层产生h(g(x))h(g(x)),从翻译 2017-07-14 12:22:20 · 730 阅读 · 0 评论 -
keras 系列 | NVIDIA+CUDA+Tensorflow+Keras安装笔记
Ubuntu16.04+Cuda+Caffe安装中已经介绍了在Ubuntu16.04+NVIDIA TITAN XP+CUDA8.0+cudnn_v6+OpenCV3.2的安装过程。原创 2017-09-03 16:03:06 · 673 阅读 · 0 评论 -
Ubuntu16.04+Cuda+Caffe安装
安装依赖项sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compilersudo apt-get install --no-install-recommends libboost-all-dev libatlas-bas原创 2017-08-01 17:02:16 · 2914 阅读 · 2 评论 -
caffe系列 | caffe使用日志文件绘制Loss Accuracy图像
在使用caffe训练数据集时通常需要对训练过程中损失值、准确率等进行可视化,使用python接口可视化的步骤可以参考博文caffe的python接口学习(7):绘制loss和accuracy曲线,本文将会介绍一种使用命令行训练数据,并利用训练过程的输出进行可视化的方法。一、caffe 模型训练在制作好数据集、贴好标签、并将数据集转为lmdb格式之后,就可以对网络进行训练,训练命令如下:原创 2017-07-26 18:58:01 · 1356 阅读 · 0 评论