epoch、batch-size、迭代

(1)iteration:表示1次迭代(也叫training step),[batch size]训练数据forward+backward后更新参数过程

(2)batch-size:1次迭代所使用的样本量;

(3)epoch:1个epoch表示过了1遍训练集中的所有样本。

epoch > 1? 一句简单概括,就是为了把数据中的特征进行充分学习。 那么,为什么进行一次学习学不好?其实,主要原因不是一次学不好,而是学不到那么好,学习容易快速的陷入局部最优,这样的学习容易受到初始参数,喂入数据自身特点等因素影响。为了防止快速陷入局部最优,大家最常用的方法就是使用较小的学习速率,也就是降低learning rate。learning rate小了,为了将数据学充分,自然就要增加学习次数。也就是增加epoch。

值得注意的是,在深度学习领域中,常用带mini-batch的随机梯度下降算法(Stochastic Gradient Descent, SGD)训练深层结构,它有一个好处就是并不需要遍历全部的样本,当数据量非常大时十分有效。此时,可根据实际问题来定义epoch,例如定义10000次迭代为1个epoch,若每次迭代的batch-size设为256,那么1个epoch相当于过了2560000个训练样本。




参考链接:https://www.zhihu.com/question/43673341/answer/257382587


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值