自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(353)
  • 资源 (3)
  • 收藏
  • 关注

原创 tmux界面运行代码

运行代码:在tmux分离会话:按Ctrl + b然后按d。。通过这些操作,你可以轻松进入tmux会话并运行代码,退出后代码仍然在后台运行,可以随时恢复会话查看结果。在使用tmux进行任务执行时,即便关闭终端窗口,代码仍然会继续在后台运行。

2024-11-29 20:18:21 438

原创 人工智能的未来:机遇与挑战

它不仅在医疗、教育、金融、交通等领域展现出强大的应用潜力,还逐渐深入到人们的日常生活中,改变着我们的工作方式和生活习惯。然而,随着人工智能的迅猛发展,也带来了新的挑战和思考。在未来的发展中,我们需要充分利用人工智能的潜力,同时审慎应对其带来的挑战。本文将从人工智能的发展历程、应用现状、未来前景以及面临的挑战等方面,探讨人工智能技术如何塑造我们的未来,并提出应对这些变化的策略。在教育领域,积极培养人工智能领域的专业人才,并为受影响的劳动力提供再培训和技能提升的机会,帮助他们适应新兴职业需求。

2024-11-09 18:03:53 1155

原创 机器学习与神经网络的发展前景

随着科学研究的深入,物理学家们面临日益复杂的数据和问题,机器学习为物理学研究提供了新的思路和工具。例如,研究人员利用机器学习算法对实验数据进行分析,从而发现潜在的规律,提出新的物理理论。然而,在技术迅速发展的同时,伦理和社会责任问题也日益凸显,我们应当关注这些技术对社会的影响,确保其能够为人类带来积极的变化。随着计算能力的提升和数据量的增加,未来的机器学习模型将能处理更复杂的问题,推动更高水平的智能化。近年来,机器学习和神经网络在多个领域的广泛应用,推动了生产效率和服务质量的提升。

2024-10-31 15:53:29 791 3

原创 机器学习和深度学习的区别到底是什么?

现在搞传统机器学习相关的研究论文确实占比不太高,有的人吐槽深度学习就是个系统工程而已,没有数学含金量。但是无可否认的是深度学习是在太好用啦,极大地简化了传统机器学习的整体算法分析和学习流程,更重要的是在一些通用的领域任务刷新了传统机器学习算法达不到的精度和准确率。深度学习这几年特别火,就像5年前的大数据一样,不过深度学习其主要还是属于机器学习的范畴领域内,所以。

2024-10-30 10:21:15 884

原创 代码目录结构

ActivationType, Pool, ModelType(helpers文件中的classes.py)-CSDN博客ROOT_DIR(helpers文件中的constants.py)-CSDN博客DataSetEncoders, PosEncoder(helpers文件中的encoders.py)-CSDN博客MetricType(helpers文件中的metrics.py)-CSDN博客ModelType(helpers文件中的model.py)-CSDN博客parse_arguments(help

2024-10-24 16:05:48 610

原创 Experiment(experiments.py)

Experiment类()Experiment类()Experiment类()Experiment类()Experiment类()Experiment类()

2024-10-22 15:31:07 784

原创 set_seed(helpers文件中的utils.py)

该代码提供了几个常用的工具函数,。这些函数主要用于 PyTorch 和 PyTorch Geometric 框架中的深度学习训练流程。

2024-10-22 15:00:53 485

原创 CoGNN(models文件中的CoGNN.py)

类实现了一个图神经网络(GNN),该模型利用 Gumbel-Softmax 技术动态调整边缘权重(边缘选择),并根据输入的节点特征和边缘信息进行图嵌入生成。模型的主要功能包括环境编码、节点和边的编码、边缘权重的创建和应用、跳跃连接(skip connection)、以及池化操作,用于生成整个图的嵌入。模型中的 Gumbel-Softmax 温度参数可以学习或固定。其中

2024-10-22 14:03:02 785

原创 TempSoftPlus(models文件中的temp.py)

类。它通温度参数是反比于输出的结果,因此需要将 SoftPlus 的结果取倒数。from helpers.classes import GumbelArgs可以查看。

2024-10-22 11:23:31 575

原创 ActionNet(models文件中的action.py)

ActionNet类是一个表示代理策略的神经网络模型。该模型使用多个图神经网络层来处理输入数据,主要用于强化学习或图数据中的任务。在前向传播过程中,模型会对输入特征和边的属性进行一系列的图卷积操作,并逐层对输出进行激活和 Dropout 操作,最终返回一个预测结果。其中from helpers.classes import ActionNetArgs查看。

2024-10-22 10:27:38 821

原创 Dataset(helpers文件中dataset_classes文件的datasets.py)

该代码定义了一个用于管理和加载不同图数据集的框架。其核心是通过DataSet这些功能允许用户灵活地加载、预处理不同类型的图数据,并在指定的配置下进行训练和评估。其中from helpers.dataset_classes.root_neighbours_dataset import RootNeighboursDataset可以查看可以查看from helpers.dataset_classes.lrgb import PeptidesFunctionalDataset可以查看可以查看可以查看。

2024-10-22 10:10:09 1035

原创 apply_transform(lrgb文件中的transforms.py)

调用。

2024-10-22 09:30:45 723

原创 set_dataset_splits(lrgb文件中的split_generator.py)

该代码的核心功能是将训练、验证和测试集的分割信息设置到 PyTorch Geometric (PyG) 数据集对象中。最终通过调用方法来设置相应的属性值。

2024-10-22 09:29:00 802

原创 compute_posenc_stats(lrgb文件encoders文件中的compute.py)

该代码代码通过预先计算图结构的特征,如拉普拉斯矩阵的特征值与特征向量,或随机游走着陆概率等,生成用于图神经网络的图位置编码。位置编码可以帮助图神经网络更好地捕捉图的拓扑结构信息,提高模型的表达能力。其中from helpers.encoders import PosEncoder可以查看。

2024-10-22 09:25:36 1022

原创 cosine_with_warmup_scheduler(lrgb文件中的cosine_scheduler.py)

这段代码实现了一个带有预热阶段的余弦退火学习率调度器。其目的是在训练过程中动态调整学习率,开始时通过预热线性增加学习率,然后在余弦曲线的基础上逐渐减少学习率。调度器的设计可以帮助模型在训练初期稳定学习,并随着训练的进行逐步减少学习率,避免训练后期的过拟合问题。 该调度器主要由两个函数组成:(1):定义了一个函数 ,用于创建一个带有预热的余弦退火学习率调度器。接收三个参数(2):调用 函数来生成调度器。将优化器、预热步数、总训练步数传递给该函数以创建调度器。(3):返回创建好的学习率调度器对象,

2024-10-21 14:26:15 1310

原创 ActivationType, Pool, ModelType(helpers文件中的classes.py)

定义命名元组类ActionNetArgs的NamedTuple,用于存储构建行动网络(Action Network)的参数配置。NamedTuple是一种轻量级的数据结构,允许我们为每个字段指定名称并通过名称访问字段。:模型类型,ModelType枚举类定义了不同的模型类型,如 GCN、GIN 等,决定了网络的基本组件结构。:网络的层数,表示网络中包含的层的数量。:隐藏层的维度,通常是在多层感知机(MLP)或卷积层中使用的特征维度。

2024-10-21 13:09:43 1136

原创 Concat2NodeEncoder(lrgb文件中的encoders文件中的composition.py)

""":定义了一个继承自的类。这个类的主要作用是将两个节点编码器的结果拼接在一起。(2)文档字符串:简单描述了该类的功能,即拼接两个节点编码器的输出。

2024-10-21 11:24:47 1155

原创 DataSetEncoders, PosEncoder(helpers文件中的encoders.py)

定义了一个继承自的类,这是一个线性层扩展。x:输入张量(特征向量)。:额外的可选参数pestat,在这里并没有使用,留作扩展。:调用父类Linear的forward方法,执行标准的线性变换,将输入x映射到输出。"""""":定义了一个枚举类,用于管理不同类型的数据集编码器。:定义NONE编码器类型,表示不使用任何编码器。:定义MOL编码器类型,用于处理分子图的原子和键特征。"""""":定义了一个枚举类PosEncoder,用于选择位置编码器类型。:定义NONE。

2024-10-21 11:00:15 1291

原创 AtomEncoder, BondEncoder(lrgb文件中encoders文件的mol_encoder.py)

调用函数获取所有原子特征的维度信息。每个原子特征可能有多个离散的值,这里返回的是每个特征的取值范围(即每个特征的分类数)。结果是一个包含每个原子特征维度的列表。类似地,调用函数获取所有键特征的维度信息。结果是一个列表,每个元素表示某个键特征的离散取值数。:定义了一个类,继承自。该类用于将原子特征嵌入到高维向量空间中。:初始化方法,接收一个参数emb_dim,表示嵌入维度。:调用父类的初始化方法,确保初始化正确。:定义了一个ModuleList,其中将存放每个原子特征的嵌入层。ModuleList。

2024-10-21 10:22:34 1080

原创 RWSENodeEncoder, KER_DIM_PE(lrgb文件中的encoders文件中的kernel.py)

LAYERS = 3:核函数嵌入的维度,表示生成的核函数特征将有 28 维。:用于随机游走的步骤数,表示核函数计算中的时间步数。:选择的编码器模型类型,默认为Linear,即对核函数特征应用线性层。当模型类型为 MLP 时,表示 MLP 的层数为 3。:原始核特征的归一化方式,这里选择批归一化(BatchNorm是否将核嵌入作为一个独立的变量传递,默认为False。Args:"""(1):定义了一个类,继承自,这是一个可配置的基于核的节点编码器,用于图神经网络。(2)文档字符串。

2024-10-21 09:49:54 1196

原创 LapPENodeEncoder, LAP_DIM_PE(lrgb文件中的encoders文件中的laplace.py)

else::初始化,默认情况下不定义后处理的多层感知机(MLP)。:如果大于 0,定义后处理 MLP。:定义一个空列表layers,用于存储 MLP 的层。(4):如果后处理层数为 1,则仅添加一个线性层和激活层。:添加一个线性层,维度不变。:添加 ReLU 激活函数。(5):如果后处理层数大于 1,则构建多个线性层和激活层。第一层将特征维度扩展为 2 倍的dim_pe。:添加 ReLU 激活函数。为剩余层添加线性层和激活层(保持特征大小为2 * dim_pe。:添加线性层,特征维度保持不变。

2024-10-18 20:09:42 623

原创 WeightedGCNConv, WeightedGINConv, WeightedGNNConv, GraphLinear(models文件中的layers.py)

这段代码定义了几种图卷积层和线性层,旨在处理图神经网络(GNN)中的图结构数据。这些层包括基于 GCN、GIN 和自定义 GNN 的加权卷积层,edge_attr。此外,代码还定义了一个图线性层。这些层的核心是基于图的消息传递机制(),它负责通过图的边将信息从一个节点传播到其他节点。

2024-10-17 19:57:28 700

原创 ModelType(helpers文件中的model.py)

这个代码通过ModelType枚举类管理不同类型的图神经网络模型(如 GCN、GIN 等),并根据模型类型构建相应的网络层列表。通过灵活的方法,用户可以动态配置输入、隐藏和输出维度、层数等参数,生成完整的网络结构。:代码通过枚举类型区分不同模型,通过静态方法和条件判断动态选择合适的图卷积层(或线性层),并根据输入维度等信息自动生成相应的网络组件。其中。

2024-10-17 19:29:26 665 1

原创 MetricType(helpers文件中的metrics.py)

这段代码实现了一个通用的框架,特别适用于图神经网络的分类和回归任务。通过MetricType枚举类可以灵活地选择合适的损失和评估方法,并根据任务类型动态调整输出维度和评估标准。可以查看。

2024-10-17 17:29:08 852

原创 ROOT_DIR(helpers文件中的constants.py)

通过获取当前脚本的绝对路径。使用 os.path.dirname()连续两次向上移动两个目录级别,最终获取项目的根目录。这种方法确保了项目的根目录路径可以动态确定,避免了手动硬编码路径的问题,适用于跨平台文件和目录操作。例如,如果script.py位于目录中,那么ROOT_DIR最终的值将是。

2024-10-17 17:21:48 345

原创 Planetoid(helpers.dataset_classes文件中的classic_datasets.py)

Planetoid类: 该类继承自,用于加载 Planetoid 数据集(如 Cora、CiteSeer、PubMed),并将其处理为图数据结构。

2024-10-17 17:17:12 828

原创 PeptidesFunctionalDataset(helpers.dataset_classes文件中的lrgb.py)

该类继承自,用于处理图数据集,特别是肽功能分类的图数据集。是 PyTorch Geometric 中的类,用于将整个数据集加载到内存中进行快速处理。

2024-10-17 17:09:29 843

原创 CyclesDataset(helpers.dataset_classes文件中的cycles_dataset.py)

任务类型:分类任务用途:`CyclesDataset`。每个图的标签是基于其拓扑结构的类别,模型通过训练来预测每个环形图的类别,因此这是一个典型的图分类任务。

2024-10-17 17:04:36 721

原创 RootNeighboursDataset(helpers.dataset_classes文件中的root_neighbours_dataset.py)

用途:在 `RootNeighboursDataset` 中,任务是给定一棵根树,预测根节点度数为6的邻居的特征平均值。因此,模型需要基于根节点的结构,找到度为6的邻居,并计算其特征的平均值。这属于回归问题,因为。这个类通过随机生成的树状图数据来模拟一种节点关系,并基于图结构生成特征和标签。代码使用了PyTorch和的功能来处理图数据。

2024-10-17 16:53:12 1073

原创 parse_arguments(helpers文件中的parse_arguments.py)

文件的作用是定义和解析命令行参数,使得用户可以通过命令行灵活地配置实验的各项设置。这样设计的好处在于增加了代码的灵活性和可重复性,用户可以方便地在不同的实验配置之间进行切换,而不需要直接修改代码。文件中的参数涵盖了数据集选择、模型配置、训练过程以及设备设置,确保实验过程可以完全由用户控制。

2024-10-15 16:28:39 622

原创 Cooperative graph neural networks(五)Model Properties

引用次数:9引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023.

2024-10-15 14:59:38 623

原创 Cooperative graph neural networks(四)Cooperative Graph Neural Networks

引用次数:9引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023.

2024-10-15 14:58:10 892

原创 Cooperative Graph Neural Networks(三)Related Work

引用次数:9引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023.

2024-10-15 14:57:38 756

原创 Cooperative Graph Neural Networks(二)Background

引用次数:9引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023.

2024-10-15 14:57:08 788

原创 Cooperative Graph Neural Networks(一)摘要和Introduction

讲述了一种新的图神经网络(Graph Neural Network,GNN)训练框架,称为Cooperative Graph Neural Networks (CO-GNNs)。GNN是一种在图上进行机器学习的架构,通过一系列不变变换对输入图的节点表示进行迭代计算。(这句话介绍了图神经网络的基本概念。在每一层,每个节点状态都基于来自其邻居的消息的聚合进行更新。(这句话指出了现有的GNN模型通常采用的消息传递机制。在这项工作中,我们提出了一种新的GNN训练框架,

2024-10-15 14:56:32 905

原创 Cooperative graph neural networks代码解读

引用次数:9引用格式:Finkelshtein B, Huang X, Bronstein M, et al. Cooperative graph neural networks[J]. arXiv preprint arXiv:2310.01267, 2023.

2024-10-15 14:55:31 585

原创 main.py

整个main.py文件的作用是作为项目的入口,负责启动整个实验的流程。首先解析命令行参数,然后根据用户需求设置 GPU 设备,最后通过Experiment类来运行实验。在这个文件中,代码的设计使得整个实验流程变得模块化且易于配置,用户只需通过命令行参数来控制实验的各种设置,而无需对代码进行修改。这样可以方便地进行不同实验之间的切换和复用。

2024-10-15 14:54:49 292

原创 ICML 2024 | 牛津提出合作图神经网络Co-GNNs,更灵活的消息传递新范式

本文提出了一种训练图神经网络的新框架“合作图神经网络”(Co-GNNs),其中每一个节点可以被看作一个独立的玩家,可以在消息传递之前基于当前特征计算出一个动作分布,然后根据分布采样选择该节点在本层的动作。可选择的动作分为以下几种:“倾听”、“广播”、“倾听和广播(又称标准)”或“隔离”。Co-GNNs提供了一种更灵活和动态的消息传递范式,其中每个节点了可以根据其状态确定自己的策略,并有效地在学习过程中探索图拓扑结构。

2024-10-12 19:23:20 840

原创 Review of deep learning: concepts, CNN architectures, challenges, applications, future directions(二)

DL技术可分为三大类:无监督、部分监督(半监督)和有监督。此外,深度强化学习(DRL),也被称为RL,是另一种类型的学习技术,它通常被认为属于部分有监督的(偶尔也是无监督的)学习技术的类别。

2024-07-19 20:43:24 1127 3

原创 Review of deep learning: concepts, CNN architectures, challenges, applications, future directions(一)

在过去的几年里,深度学习(DL)计算范式一直被认为是机器学习(ML)社区的黄金标准。此外,它已经逐渐成为ML领域中应用最广泛的计算方法,从而在一些复杂的认知任务中取得突出的结果,匹配甚至击败人类表现所提供的结果。DL的好处之一是能够学习大量的数据。DL 领域在过去的几年中发展迅速,并被广泛地用于成功地解决了广泛的传统应用。更重要的是,DL在许多领域都优于著名的ML技术,如网络安全、自然语言处理、生物信息学、机器人技术和控制,以及医学信息处理等。

2024-07-11 17:15:44 1080 1

ExGeo框架代码构成

ExGeo框架代码构成

2024-04-16

TrustGeo参文2:Deep evidential regression(网络不确定性测量)

TrustGeo参文2:Deep evidential regression(网络不确定性测量)

2024-03-25

细粒度IP定位参文32(对抗图对比学习(ARIEL))

细粒度IP定位参文32(对抗图对比学习(ARIEL))

2024-03-15

RIPGeo框架代码构成

RIPGeo框架代码构成

2024-03-13

​知识图谱:基于嵌入的模型(TransE 、TransH、TransR和TransD)

​知识图谱:基于嵌入的模型(TransE 、TransH、TransR和TransD)

2024-03-12

知识图谱技术综述(电子科技大学学报 2016年发表)

知识图谱技术综述(电子科技大学学报 2016年发表)

2024-03-10

细粒度IP定位参文27:Identifying user geolocation

细粒度IP定位参文27:Identifying user geolocation

2024-03-09

细粒度IP定位参文2:(街道IP定位)

细粒度IP定位参文2:(街道IP定位)

2024-03-08

RIPGeo参文9:(细粒度IP定位)

RIPGeo参文9:(细粒度IP定位)

2024-03-08

TrustGeo: Uncertainty-Aware Dynamic Graph Learning for Trustwort

提供了TrustGeo框架的原始PyTorch实现。

2024-02-19

C语言项目实战案例(带源码和解析)(第三部分:C语言2048小游戏演示和说明)

C语言项目实战案例(带源码和解析)(第三部分:C语言2048小游戏演示和说明)

2024-01-05

栈求表达式的值Stack-Expr.zip

栈求表达式的值Stack-Expr.zip

2023-12-23

贪吃蛇游戏下载资源snake

贪吃蛇游戏下载资源snake

2023-12-22

反转有头节点链表下载资源

反转有头节点的链表

2023-12-22

反转无头节点链表下载资源

反转没有头节点的链表

2023-12-22

DETR(End-to-End Object Detection with Transformers (CVPR 20)相关代码

配合“DETR纯代码分享”,可以结合一起看,效果会更好!

2023-10-24

Scene-Recognition-With-Bag-Of-Words-master.zip

本次实验是基于词袋模型的图像分类技术,利用提取的局部区域的分布对图像进行识别。在图像分类中,词袋模型算法需要通过监督或非监督的学习来获得视觉词典。基于词袋模型的图像分类算法一般分为四步,首先对图像进行局部特征向量的提取(本次实验采用HOG);其次利用上一步得到的特征向量集,抽取其中有代表性的向量,作为单词,形成视觉词典(本实验采用K-means聚类算法);然后对图像进行视觉单词的统计,一般判断图像的局部区域和某一单词的相似性是否超过某一阈值,这样即可将图像表示成单词的分布,即完成了图像的表示;最后设计并训练分类器,利用图像中单词的分布进行图像分类(本实验采用KNN分类算法和线性SVM多分类算法)。

2020-08-13

Local-Feature-Matching-master.zip

计算机视觉作业(二)特征匹配是图像处理和计算机视觉的核心组成部分。在本次实验中,我们将创建一个局部特征匹配算法,并尝试匹配真实场景的多个视图。将实现一个简化版本的sift,用于解决局部特征匹配问题,使检测到的特征对遮挡和杂波具有鲁棒性。由于特性是本地的,可以在一张图像中生成数百或数千个特性,同时能够实现实时性能。我们使用Harris角点检测器和sift特征描述符来生成关键点,同时也使用了自适应非最大抑制来获得图像上的均匀分布的角。

2020-08-13

Image_Filtering_and_Hybrid_Images.zip

计算机视觉作业(一)Image Filtering and Hybrid Images的配套代码和结果,用python做的

2020-08-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除