/*寻找素数对
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7757 Accepted Submission(s): 3874
Problem Description
哥德巴赫猜想大家都知道一点吧.我们现在不是想证明这个结论,而是想在程序语言内部能够表示的数集中,任意取出一个偶数,来寻找两个素数,使得其和等于该偶数.
做好了这件实事,就能说明这个猜想是成立的.
由于可以有不同的素数对来表示同一个偶数,所以专门要求所寻找的素数对是两个值最相近的.
Input
输入中是一些偶整数M(5<M<=10000).
Output
对于每个偶数,输出两个彼此最接近的素数,其和等于该偶数.
Sample Input
20 30 40
Sample Output
7 13
13 17
17 23
Source
浙江工业大学第四届大学生程序设计竞赛
*/
#include<stdio.h>
int f(int x)
{
int i;
if( x < 2) return 0;
for( i = 2; i < x; i++)
if(x % i == 0) return 0;
return 1;
}
int main()
{
int n, i;
while(scanf("%d", &n) != EOF)
{
for(i = n/2; i >= 2; i-- )
if( f(i) && f(n-i))
{
printf("%d %d\n", i, n-i);
break;
}
}
return 0;
}
题意:给出任意一个大于4的偶数,求相邻最近的2个素数之和等于该偶数的奇数。
思路:从该偶数的一半开始寻找这2个素数,必定是一大一小,速度最快。