SVM

本文介绍支持向量机(SVM)的基本概念及其核技巧的应用。通过Vapnik原则理解SVM的设计理念,探讨了如何使用支持向量来表示模型参数,并详细解释了核函数在非线性分类中的作用。此外,还讨论了最佳分离超平面的概念及其对于泛化性能的重要性。
摘要由CSDN通过智能技术生成

1、核机器是最大边缘方法,把模型表示为训练实例的一个子集的影响之和。

2、Support Vector Machine

3、Vapnik原则:不要在解决问题之前把解决一个更复杂的问题作为第一步。

4、支持向量:线性模型的参数(权重向量)可以用训练集的一个子集表示,称为~;

5、核函数:数据实例之间相似性的应用专用度量。

非线性基函数:把输入映射到另一个空间,在那个空间里课找到线性(光滑的)解。核函数思想相同。

6、基于核的算法可以形式化的表示成凸优化问题,并且存在单个最优解。

超参数:任何方法都需要,使得算法与当前数据相匹配。


二、最佳分离超平面

为了更好的泛化,不仅希望实例在超平面的正确一侧,而且还希望它们离超平面有一定距离。超平面到它两侧最近的距离称作边缘


来源:《机器学习导论》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值