一、二叉树的递归实现
1.先序遍历(DLR)
先序遍历的递归过程为:若二叉树为空,遍历结束。否则,
(1) 访问根结点;
(2) 先序遍历根结点的左子树;
(3) 先序遍历根结点的右子树。
先序遍历二叉树的递归算法如下:
void PreOrder(BiTree bt) /*先序遍历二叉树bt*/
{
if (bt==NULL) return; /*递归调用的结束条件*/
Visite(bt->data); /*访问结点的数据域*/
PreOrder(bt->lchild); /*先序递归遍历bt 的左子树*/
PreOrder(bt->rchild); /*先序递归遍历bt 的右子树*/
}
2.中序遍历(LDR)
中序遍历的递归过程为:若二叉树为空,遍历结束。否则,
(1)中序遍历根结点的左子树;
(2)访问根结点;
(3)中序遍历根结点的右子树。
中序遍历二叉树的递归算法如下:
void InOrder(BiTree bt) /*中序遍历二叉树bt*/
{
if (bt==NULL) return; /*递归调用的结束条件*/
InOrder(bt->lchild); /*中序递归遍历bt 的左子树*/
Visite(bt->data); /*访问结点的数据域*/
InOrder(bt->rchild); /*中序递归遍历bt 的右子树*/
}
3.后序遍历(LRD)
后序遍历的递归过程为:若二叉树为空,遍历结束。否则,
(1)后序遍历根结点的左子树;
(2)后序遍历根结点的右子树。
(3)访问根结点;
后序遍历二叉树的递归算法如下:
void PostOrder(BiTree bt) /*后序遍历二叉树bt*/
{
if (bt==NULL) return; /*递归调用的结束条件*/
PostOrder(bt->lchild); /*后序递归遍历bt 的左子树*/
PostOrder(bt->rchild); /*后序递归遍历bt 的右子树*/
Visite(bt->data); /*访问结点的数据域*/
}
4.层次遍历
所谓二叉树的层次遍历,是指从二叉树的第一层(根结点)开始,从上至下逐层遍历,在同一层中,则按从左到右的顺序对结点逐个访问。
下面讨论层次遍历的算法。
由层次遍历的定义可以推知,在进行层次遍历时,对一层结点访问完后,再按照它们的访问次序对各个结点的左孩子和右孩子顺序访问,这样一层一层进行,先遇到的结点先访问,这与队列的操作原则比较吻合。因此,在进行层次遍历时,可设置一个队列结构,遍历从二叉树的根结点开始,首先将根结点指针入队列,然后从对头取出一个元素,每取一个元素,执行下面两个操作:
(1) 访问该元素所指结点;
(2) 若该元素所指结点的左、右孩子结点非空,则将该元素所指结点的左孩子指针和右孩子指针顺序入队。
此过程不断进行,当队列为空时,二叉树的层次遍历结束。
在下面的层次遍历算法中,二叉树以二叉链表存放,一维数组Queue[MAXNODE]用以实现队列,变量front 和rear 分别表示当前对首元素和队尾元素在数组中的位置。
void LevelOrder(BiTree bt) /*层次遍历二叉树bt*/
{
BiTree Queue[MAXNODE];
int front,rear;
if (bt==NULL)
return;
front=-1;
rear=0;
queue[rear]=bt;
while(front!=rear)
{
front++;
Visite(queue[front]->data); /*访问队首结点的数据域*/
if (queue[front]->lchild!=NULL) /*将队首结点的左孩子结点入队列*/
{
rear++;
queue[rear]=queue[front]->lchild;
}
if (queue[front]->rchild!=NULL) /*将队首结点的右孩子结点入队列*/
{
rear++;
queue[rear]=queue[front]->rchild;
}
}
}