地宫夺宝 java

地宫取宝  
时间限制:1.0s   内存限制:256.0MB
    
问题描述
  X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
  地宫的入口在左上角,出口在右下角。
  小明被带到地宫的入口,国王要求他只能向右或向下行走。
  走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
  当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
  请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
  接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14

锦囊妙计

B    
     
     
     
    A

在做地宫夺宝之前,请先思考一下,从A到B共有多少种方法

AàB的算法有很多,最简单的就是排列组合,但这样做与地宫夺宝就没什么关系了。

看了下面的图后你是否有了什么想法?


70351551
35201041
1510631
54321
11111


import java.util.Scanner;

public class Main {

	private static int K = 12;
	private static int[][] bb ;
	private static int[][][][] cc ;
	private static int m, n, k;
	
	public static void main(String[] args) {
		int i, j;
		Scanner sc = new Scanner(System.in);
		n = sc.nextInt();
		m = sc.nextInt();
		k = sc.nextInt();
		//储存矩阵中的数据n为行 m为列
		bb = new int[n][m];
		//储存在当前位置某一max某一宝物数量有多少种方法
		//cc[1][2][5][3]=4;就是在第2行第3列,当手中最大宝物为5、宝贝数为3的方法有4种
		cc = new int[n][m][K][K];
		
//		初始化cc数组
//		
		init();
		
//		为bb【】赋值
		for (i = 0; i < n; i++) {
			for (j = 0; j < m; j++) {
				bb[i][j] = sc.nextInt();
			}
		}
		
		fds(0, 0, -1, 0);
		
		System.out.println(cc[0][0][0][0]%1000000007);
	}

	private static int fds(int i, int j, int max, int count) {
		
		//这个if语句是用于加速程序的运行,已经计算的格子,就不必在计算一次,直接返回。
		if (cc[i][j][max + 1][count] != 0) {
			return cc[i][j][max + 1][count];
		}
		int sum=0;
		//最后一个格
		if(i==n-1 && j==m-1){
//			1、手中的宝物刚好k件,就不必关心最后一个格的宝物
//			2、手中的宝物为k-1件,只有最后一个格的宝物大于手中最大宝物
//			满足这两个条件,则夺宝成功
			if(count==k||(count==k-1 && bb[i][j]>max)) 
				sum++;
			return cc[i][j][max+1][count]=sum;
		}
		//向下走
		if(i<n-1){
			if(bb[i][j]>max){
//				该格子中的宝物大于手中宝物的最大值,并取出宝物
				sum += fds(i+1,j,bb[i][j],count+1);
				sum%=1000000007;
			}
//			无论宝物有多大,都不取。
			sum += fds(i+1,j,max,count);
			sum%=1000000007;
		}
	
		//向右走
		if(j <m-1){
			if(bb[i][j]>max){
//				该格子中的宝物大于手中宝物的最大值,并取出宝物
				sum += fds(i,j+1,bb[i][j],count+1);
				sum%=1000000007;
			}
//			无论宝物有多大,都不取。
			sum += fds(i,j+1,max,count);
			sum%=1000000007;
		}
		return cc[i][j][max+1][count]=sum%1000000007;

	}
	
	public static void init() {
		int i, j, r, s;
		for (i = 0; i < n; i++) {
			for (j = 0; j < m; j++) {
				for (r = 0; r < K; r++) {
					for (s = 0; s < K; s++) {
						cc[i][j][r][s]=-1;
					}
				}

			}
		}
	}
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值