地宫取宝
时间限制:1.0s 内存限制:256.0MB
问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14
锦囊妙计
B | ||||
A |
在做地宫夺宝之前,请先思考一下,从A到B共有多少种方法
AàB的算法有很多,最简单的就是排列组合,但这样做与地宫夺宝就没什么关系了。
看了下面的图后你是否有了什么想法?
70 | 35 | 15 | 5 | 1 |
35 | 20 | 10 | 4 | 1 |
15 | 10 | 6 | 3 | 1 |
5 | 4 | 3 | 2 | 1 |
1 | 1 | 1 | 1 | 1 |
import java.util.Scanner;
public class Main {
private static int K = 12;
private static int[][] bb ;
private static int[][][][] cc ;
private static int m, n, k;
public static void main(String[] args) {
int i, j;
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
m = sc.nextInt();
k = sc.nextInt();
//储存矩阵中的数据n为行 m为列
bb = new int[n][m];
//储存在当前位置某一max某一宝物数量有多少种方法
//cc[1][2][5][3]=4;就是在第2行第3列,当手中最大宝物为5、宝贝数为3的方法有4种
cc = new int[n][m][K][K];
// 初始化cc数组
//
init();
// 为bb【】赋值
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
bb[i][j] = sc.nextInt();
}
}
fds(0, 0, -1, 0);
System.out.println(cc[0][0][0][0]%1000000007);
}
private static int fds(int i, int j, int max, int count) {
//这个if语句是用于加速程序的运行,已经计算的格子,就不必在计算一次,直接返回。
if (cc[i][j][max + 1][count] != 0) {
return cc[i][j][max + 1][count];
}
int sum=0;
//最后一个格
if(i==n-1 && j==m-1){
// 1、手中的宝物刚好k件,就不必关心最后一个格的宝物
// 2、手中的宝物为k-1件,只有最后一个格的宝物大于手中最大宝物
// 满足这两个条件,则夺宝成功
if(count==k||(count==k-1 && bb[i][j]>max))
sum++;
return cc[i][j][max+1][count]=sum;
}
//向下走
if(i<n-1){
if(bb[i][j]>max){
// 该格子中的宝物大于手中宝物的最大值,并取出宝物
sum += fds(i+1,j,bb[i][j],count+1);
sum%=1000000007;
}
// 无论宝物有多大,都不取。
sum += fds(i+1,j,max,count);
sum%=1000000007;
}
//向右走
if(j <m-1){
if(bb[i][j]>max){
// 该格子中的宝物大于手中宝物的最大值,并取出宝物
sum += fds(i,j+1,bb[i][j],count+1);
sum%=1000000007;
}
// 无论宝物有多大,都不取。
sum += fds(i,j+1,max,count);
sum%=1000000007;
}
return cc[i][j][max+1][count]=sum%1000000007;
}
public static void init() {
int i, j, r, s;
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
for (r = 0; r < K; r++) {
for (s = 0; s < K; s++) {
cc[i][j][r][s]=-1;
}
}
}
}
}
}