1. 题目
盒子中装有3个红球,3个蓝球,4个黄球,从中抽取三次,每次抽一个球,取完不放回,则每种颜色球各得一个的概率是___3/10_____
2. 题解
第一次抽到 红球的概率 P1 = 3 / (3 + 3 + 4) = 3/10
第二次抽到 蓝球的概率 P2 = 3 / (2 + 3 + 4) = 3/9
第三次抽到 黄球的概率 P3 = 4/ (2 + 2 + 4) = 4/8
则 依次抽到 红球、篮球、黄球 的概率 为 P ’ = P 1 x P 2 x P 3
因为 红 蓝 黄 的先后排列顺序 一共可能有 6 有 种情况 (3 的全排列),
所以 3 次不放回的抽取,得到3个不同颜色的球的概率 为
P = 6 x P ’ = 6 x 3/10 x 3/9 x 4/8 = 3/10