一. Spiral Matrix
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.
For example,
Given the following matrix:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
You should return [1,2,3,6,9,8,7,4,5].
Difficulty:Medium
TIME:40MIN
解法一(直接模拟)
这又是一道模拟题,还记得上次做的模拟题是ZigZag Conversion,个人觉得更加抽象一点。
这道题的第一个思路是每次遍历一圈,但是总共要遍历多少圈呢。答案是矩阵的行数和列数中比较小的数除以二。
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector<int> result;
if(matrix.size() == 0 || matrix[0].size() == 0)
return result;
int lenRow = matrix.size();
int lenCol = matrix[0].size();
//注意总共需要遍历的圈数的限制,这个判断很重要
for(int i = 0; i < (min(lenRow, lenCol) + 1) / 2; i++) {
//从左到右遍历
for(int j = i; j < lenCol - i; j++)
result.push_back(matrix[i][j]);
//从上到下遍历
for(int j = i + 1; j < lenRow - i; j++)
result.push_back(matrix[j][lenCol - i - 1]);
//从右到左遍历,注意这里多加了一个边界值判断,避免和从左到右遍历重复
for(int j = lenCol - i - 2; j >= i && lenRow - i - 1 > i ; j--)
result.push_back(matrix[lenRow - i - 1][j]);
//从下到上遍历,注意这里多加了一个边界值判断,避免和从上到下遍历重复
for(int j = lenRow - i - 2; j >= i + 1 && i < lenCol - i - 1; j--)
result.push_back(matrix[j][i]);
}
return result;
}
代码的时间复杂度为 O(n2) 。
解法二(方向移动)
其实这个解法和上面那个解法原理是一样的,不过可以看出,上面的解法有很多边界条件的判断,稍后不慎就会出问题。
而这个解法就旨在于避开边界条件的判断,当然我们也是通过环形来移动,不过我们每次移动一格距离,每次移动都有四种方向,而且每次移动的距离都是事先可以算出来的
代码如下:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector<int> result;
if(matrix.size() == 0 || matrix[0].size() == 0)
return result;
int lenRow = matrix.size();
int lenCol = matrix[0].size();
vector<vector<int>> dir{{0,1},{1,0},{0,-1},{-1,0}}; //四种方向
vector<int> step{lenCol, lenRow - 1}; //每次移动的步长
int cur = 0;
int row = 0, col = -1;
while(step[cur % 2]) {
for(int i = 0; i < step[cur % 2]; i++) {
row += dir[cur % 4][0];
col += dir[cur % 4][1];
result.push_back(matrix[row][col]);
}
step[cur % 2]--; //朝一个方向移动完成后,下一次相反方向步长减一
cur++; //控制轮数
}
return result;
}
代码的时间复杂度为 O(n2) 。
二. Spiral Matrix II
Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.
For example,
Given n = 3,
You should return the following matrix:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
Difficulty:Medium
TIME:20MIN
解法(方向移动)
这道题其实和上题并没有什么两样,也可以使用两种解法,不过个人认为采用方向移动判断的情况比较少,不容易出错,因此就采用这种解法。
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> result(n, vector<int>(n, 0));
vector<vector<int>> dir{{0,1},{1,0},{0,-1},{-1,0}};
vector<int> step{n,n - 1};
int cur = 0;
int iPos = 0,jPos = -1;
int k = 1;
while(step[cur % 2]) {
for(int i = 0; i < step[cur % 2]; i++) {
iPos = iPos + dir[cur % 4][0];
jPos = jPos + dir[cur % 4][1];
result[iPos][jPos] = k;
k++;
}
step[cur % 2]--;
cur++;
}
return result;
}
代码的时间复杂度为 O(n2) 。