Spiral Matrix

一. Spiral Matrix

Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.

For example,
Given the following matrix:

[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
You should return [1,2,3,6,9,8,7,4,5].

Difficulty:Medium

TIME:40MIN

解法一(直接模拟)

这又是一道模拟题,还记得上次做的模拟题是ZigZag Conversion,个人觉得更加抽象一点。

这道题的第一个思路是每次遍历一圈,但是总共要遍历多少圈呢。答案是矩阵的行数和列数中比较小的数除以二。

vector<int> spiralOrder(vector<vector<int>>& matrix) {
    vector<int> result;
    if(matrix.size() == 0 || matrix[0].size() == 0)
        return result;
    int lenRow = matrix.size();
    int lenCol = matrix[0].size();
    //注意总共需要遍历的圈数的限制,这个判断很重要
    for(int i = 0; i < (min(lenRow, lenCol) + 1) / 2; i++) {
        //从左到右遍历
        for(int j = i; j < lenCol - i; j++)
            result.push_back(matrix[i][j]);
        //从上到下遍历
        for(int j = i + 1; j < lenRow - i; j++)
            result.push_back(matrix[j][lenCol - i - 1]);
        //从右到左遍历,注意这里多加了一个边界值判断,避免和从左到右遍历重复
        for(int j = lenCol - i - 2; j >= i && lenRow - i - 1 > i ; j--)
            result.push_back(matrix[lenRow - i - 1][j]);
        //从下到上遍历,注意这里多加了一个边界值判断,避免和从上到下遍历重复
        for(int j = lenRow - i - 2; j >= i + 1 && i < lenCol - i - 1; j--)
            result.push_back(matrix[j][i]);
    }
    return result;
}

代码的时间复杂度为 O(n2)

解法二(方向移动)

其实这个解法和上面那个解法原理是一样的,不过可以看出,上面的解法有很多边界条件的判断,稍后不慎就会出问题。

而这个解法就旨在于避开边界条件的判断,当然我们也是通过环形来移动,不过我们每次移动一格距离,每次移动都有四种方向,而且每次移动的距离都是事先可以算出来的

代码如下:

vector<int> spiralOrder(vector<vector<int>>& matrix) {
    vector<int> result;
    if(matrix.size() == 0 || matrix[0].size() == 0)
        return result;
    int lenRow = matrix.size();
    int lenCol = matrix[0].size();
    vector<vector<int>> dir{{0,1},{1,0},{0,-1},{-1,0}}; //四种方向
    vector<int> step{lenCol, lenRow - 1}; //每次移动的步长
    int cur = 0;
    int row = 0, col = -1;
    while(step[cur % 2]) {
        for(int i = 0; i < step[cur % 2]; i++) {
            row += dir[cur % 4][0];
            col += dir[cur % 4][1];
            result.push_back(matrix[row][col]);
        }
        step[cur % 2]--; //朝一个方向移动完成后,下一次相反方向步长减一
        cur++; //控制轮数
    }
    return result;
}

代码的时间复杂度为 O(n2)

二. Spiral Matrix II

Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.

For example,
Given n = 3,

You should return the following matrix:

[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]

Difficulty:Medium

TIME:20MIN

解法(方向移动)

这道题其实和上题并没有什么两样,也可以使用两种解法,不过个人认为采用方向移动判断的情况比较少,不容易出错,因此就采用这种解法。

vector<vector<int>> generateMatrix(int n) {
    vector<vector<int>> result(n, vector<int>(n, 0));
    vector<vector<int>> dir{{0,1},{1,0},{0,-1},{-1,0}};
    vector<int> step{n,n - 1};
    int cur = 0;
    int iPos = 0,jPos = -1;
    int k = 1;
    while(step[cur % 2]) {
        for(int i = 0; i < step[cur % 2]; i++) {
            iPos = iPos + dir[cur % 4][0];
            jPos = jPos + dir[cur % 4][1];
            result[iPos][jPos] = k;
            k++;
        }
        step[cur % 2]--;
        cur++;
    }
    return result;
}

代码的时间复杂度为 O(n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值