一. Gray Code
The gray code is a binary numeral system where two successive values differ in only one bit.
Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
For example, given n = 2, return [0,1,3,2]. Its gray code sequence is:
00 - 0
01 - 1
11 - 3
10 - 2
Note:
For a given n, a gray code sequence is not uniquely defined.
For example, [0,2,3,1] is also a valid gray code sequence according to the above definition.
For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.
Difficulty:Medium
TIME:7MIN
解法一(循环求解)
第一种思路是采用格雷码的对称机制
/*
1位格雷码
0 -- 0
1 -- 1
2位格雷码
00 -- 0
01 -- 1
11 -- 3(2 + 1)
10 -- 2(2 + 0)
可以发现最右边一位是对称的
3位格雷码
000 -- 0
001 -- 1
011 -- 3
010 -- 2
110 -- 6(4 + 2)
111 -- 7(4 + 3)
101 -- 5(4 + 1)
100 -- 4(4 + 0)
可以发现最右边两位是对称的
*/
因此就可以采用这种对称的方法求出所有的格雷码。
vector<int> grayCode(int n) {
vector<int> result{0};
vector<int> v(n, 1);
for(int i = 1; i < n; i++) //2的k次方,放在数组中避免多次求解
v[i] = 2 * v[i - 1];
for(int i = 0; i < n; i++) {
for(int k = result.size() - 1; k >= 0; k--) {
result.push_back(v[i] + result[k]);
}
}
return result;
}
代码的时间复杂度为 O(2n) 。
解法二(直接求解)
这道题是求格雷码的序列,如果单独要求第n位格雷码,又要如何求解呢
/*
给定数字n
对应的第n + 1位格雷码有(n >> 1) ^ n
比如对于5
5 >> 1 = 2
2 -- 010
5 -- 101
2 ^ 5 = 111 = 7 刚好是第6位格雷码
*/
因此代码如下:
vector<int> grayCode(int n) {
vector<int> result;
int len = 1 << n;
for(int i = 0; i < len ; i++) {
result.push_back((i >> 1) ^ i);
}
return result;
}
代码的时间复杂度为 O(2n) 。