原文链接:https://www.cnblogs.com/ktao/p/8714513.html
什么是Hash?
Hash
中文翻译为散列,又成为“哈希”,是一类函数的统称,其特点是定义域无限,值域有限。把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
基本概念
- 若关键字为k,则其值存放在f(k)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数,按这个思想建立的表为散列表。
- 对不同的关键字可能得到同一散列地址,即k1≠k2,而f(k1)=f(k2),这种现象称为碰撞(英语:Collision)。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数f(k)和处理碰撞的方法将一组关键字映射到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“像”作为记录在表中的存储位置,这种表便称为散列表,这一映射过程称为散列造表或散列,所得的存储位置称散列地址。
- 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少碰撞。
什么是Hash表?
定义
哈希表是一种根据关键码去寻找值的数据映射结构,该结构通过把关键码映射的位置去寻找存放值的地方,说起来可能感觉有点复杂,我想我举个例子你就会明白了,最典型的的例子就是字典,大家估计小学的时候也用过不少新华字典吧,如果我想要获取“按”字详细信息,我肯定会去根据拼音an去查找 拼音索引(当然也可以是偏旁索引),我们首先去查an在字典的位置,查了一下得到“安”,结果如下。这过程就是键码映射,在公式里面,就是通过key去查找f(key)。其中,按就是关键字(key),f()就是字典索引,也就是哈希函数,查到的页码4就是哈希值。
哈希冲突
但是问题又来了,我们要查的是“按”,而不是“安,但是他们的拼音都是一样的。也就是通过关键字按和关键字安可以映射到一样的字典页码4的位置,这就是哈希冲突(也叫哈希碰撞),在公式上表达就是key1≠key2,但f(key1)=f(key2)。冲突会给查找带来麻烦,你想想,你本来查找的是“按”,但是却找到“安”字,你又得向后翻一两页,在计算机里面也是一样道理的。
但哈希冲突是无可避免的,为什么这么说呢,因为你如果要完全避开这种情况,你只能每个字典去新开一个页,然后每个字在索引里面都有对应的页码,这就可以避免冲突。但是会导致空间增大(每个字都有一页)。
既然无法避免,就只能尽量减少冲突带来的损失,而一个好的哈希函数需要有以下特点:
1.尽量使关键字对应的记录均匀分配在哈希表里面(比如说某厂商卖30栋房子,均匀划分ABC3个区域,如果你划分A区域1个房子,B区域1个房子,C区域28个房子,有人来查找C区域的某个房子最坏的情况就是要找28次)。
2.关键字极小的变化可以引起哈希值极大的变化。
解决冲突
如果遇到冲突,哈希表一般是怎么解决的呢?具体方法有很多,百度也会有一堆,最常用的就是开发定址法和链地址法。
1.开发定址法
如果遇到冲突的时候怎么办呢?就找hash表剩下空余的空间,找到空余的空间然后插入。就像你去商店买东西,发现东西卖光了,怎么办呢?找下一家有东西卖的商家买呗。
由于我没有深入试验过,所以贴上在书上的解释:
2.链地址法
上面所说的开发定址法的原理是遇到冲突的时候查找顺着原来哈希地址查找下一个空闲地址然后插入,但是也有一个问题就是如果空间不足,那他无法处理冲突也无法插入数据,因此需要装填因子(空间/插入数据)>=1。
那有没有一种方法可以解决这种问题呢?链地址法可以,链地址法的原理时如果遇到冲突,他就会在原地址新建一个空间,然后以链表结点的形式插入到该空间。我感觉业界上用的最多的就是链地址法。下面从百度上截取来一张图片,可以很清晰明了反应下面的结构。比如说我有一堆数据{1,12,26,337,353...},而我的哈希算法是H(key)=key mod 16,第一个数据1的哈希值f(1)=1,插入到1结点的后面,第二个数据12的哈希值f(12)=12,插入到12结点,第三个数据26的哈希值f(26)=10,插入到10结点后面,第4个数据337,计算得到哈希值是1,遇到冲突,但是依然只需要找到该1结点的最后链结点插入即可,同理353。
优缺点
hash表其实是结合了数组和链表的优点,进行的折中方案。平衡了数组和链表的优缺点。
优点:插入和查找速度快,时间复杂度为O(1)
缺点:
1. 扩展性差,需要提前预测数据量的大小
2. 不能有序遍历数据
应用场景
Hash主要应用于数据结构中和密码学中。
用于数据结构时,主要是为了提高查询的效率,这就对速度比较重视,对抗碰撞不太看中,只要保证hash均匀分布就可以。
在密码学中,hash算法的作用主要是用于消息摘要和签名,换句话说,它主要用于对整个消息的完整性进行校验。
数据结构
使用Hash的数据结构叫做散列表,主要是为了提高查询的效率。也有直接译作哈希表,也叫Hash表,
Hash表是一种特殊的数据结构,它同数组、链表以及二叉排序树等相比较有很明显的区别,它能够快速定位到想要查找的记录,而不是与表中存在的记录的关键字进行比较来进行查找。这个源于Hash表设计的特殊性,它采用了函数映射的思想将记录的存储位置与记录的关键字关联起来,从而能够很快速地进行查找。
密码学
在密码学中,hash算法的作用主要是用于消息摘要和签名,换句话说,它主要用于对整个消息的完整性进行校验。
举个用于消息摘要例子,银行的数据库中是不能保存用户密码的原文的,只能保存密码的hash值。在这种应用场景里,对于抗碰撞和抗篡改能力要求极高,对速度的要求在其次。一个设计良好的hash算法,其抗碰撞能力是很高的。以MD5为例,其输出长度为128位,设计预期碰撞概率为,这是一个极小极小的数字——而即便是在MD5被王小云教授破解之后,其碰撞概率上限也高达,也就是说,至少需要找次才能有1/2的概率来找到一个与目标文件相同的hash值。
需要注意的是,hash算法在密码学中,主要用于信息的摘要和完整性校验,而不是加密。
概括来说,哈希(Hash)是将目标文本转换成具有相同长度的、不可逆的杂凑字符串(或叫做消息摘要),而加密(Encrypt)是将目标文本转换成具有不同长度的、可逆的密文。