实用的FSO-实时统计在线人数

ount.asp:

<%Server.ScriptTimeout=300 
id=Trim(Request.QueryString("id")) 
fc=Trim(Request.QueryString("fc")) 
if fc="" then fc="FFFF00" 
bg=Trim(Request.QueryString("bg")) 
if bg="" then bg="000000" 
bc=Trim(Request.QueryString("bc")) 
if bc="" then bc="00FF00" 
sername=Request.ServerVariables("SERVER_NAME") 
scrname=Request.ServerVariables("SCRIPT_NAME") 
linkurl="http://" & sername & scrname 
%> 
<html> 
<head> 
<title>实时统计在线人数</title> 
<META HTTP-EQUIV="Refresh" content="10; URL=<%=linkurl%>"> '每隔10秒刷新 
<meta http-equiv="Content-Type" content="text/html; charset=gb2312"> 
<style TYPE="text/css"> 
<!-- 
P {FONT-SIZE: 9pt; font-color: #eeeeee} 
A {TEXT-DECORATION: none} 
A:link {COLOR: #0068A3} 
A:visited {COLOR: #0068A3} 
A:hover {COLOR: #2f00ff; TEXT-DECORATION: underline} 
.ourfont {font-size: 9pt } 
BODY { FONT-SIZE: 9pt} 
TABLE { FONT-SIZE: 9pt} 
--> 
</style> 
</head> 
<% 
countfile=server.mappath("people.asp") 
Set fs=CreateObject("Scripting.FileSystemObject") 
n=Year(date()) 
y=Month(date()) 
r=Day(date()) 
s=Hour(time()) 
f=Minute(time()) 
m=Second(time()) 
if len(y)=1 then y="0" & y 
if len(r)=1 then r="0" & r 
if len(s)=1 then s="0" & s 
if len(f)=1 then f="0" & f 
if len(m)=1 then m="0" & m 
sj = n & "-" & y & "-" & r & " " & s & ":" & f & ":" & m 
'格式化日期、时间 
dim ly() 
Set thisfile=fs.OpenTextFile(countfile,1,False) 
countly=0 
do while not thisfile.AtEndOfStream 
thisline = thisfile.readline 
Redim preserve ly(countly) 
ly(countly) = thisline 
countly = countly + 1 
loop '将people.asp中内容读到数组中 
thisfile.close 
sameip=0 
for i=1 to (countly-1)/2 
if DateDiff("s",ly(i*2),sj)>60 then 
ly(i*2-1)="" 
ly(i*2)="" 
countly=countly-2 
end if 
if Request.ServerVariables("REMOTE_ADDR")=ly(i*2-1) then 
sameip=1 'IP已经存在 
ly(i*2)=sj 
end if 
next 
set outfile=fs.CreateTextFile(countfile) 
for i=0 to countly-1 
if ly(i)<>"" then 
outfile.WriteLine ly(i) 
end if 
next 
if sameip=0 then 
outfile.WriteLine Request.ServerVariables("REMOTE_ADDR") 
outfile.WriteLine sj  '添加新记录 
outfile.Close 
end if 
Set thisfile=fs.OpenTextFile(countfile,1,False) 
countly=0 
do while not thisfile.AtEndOfStream 
thisline = thisfile.readline 
Redim preserve ly(countly) 
ly(countly) = thisline 
countly = countly + 1'总的记录行数 
loop 
thisfile.close 
total=(countly-1)/2 '统计总人数,每人有两行记录:IP、时间 
%> 
<body>

<p><select name="Online" size="1"> 
<option selected value="Online"><%=total%>人在线上</option> 
<% 
for i=1 to total 
response.write "<option>"&ly(i*2-1)&"</option>" 
next 
%> 
</select></p> 
</body> 
</html>

people.asp:

<%Response.end%> 
172.16.20.230'用户IP 
2003-06-15 09:53:57'登录时间

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值