作为一个摸爬滚打n年的产品狗,今天想用煮火锅的姿势,给新人拆解大模型训练的秘密。毕竟我被"Pretrain、SFT、PPO"这些黑话暴击时,最渴望的就是人话版说明书。
当然,如果对于其中的某些概念感兴趣,可以看我之前的文章进一步了解:深度解析GPT与Llama模型训练体系
阶段一:熬底料(Pretrain)
想象你在重庆开火锅店,第一步得熬制万能红油底料。
- 原料:菜市场15吨牛油辣椒花椒(相当于Llama3的15万亿token语料)
- 秘诀:让学徒每天闻着香味打下手(自回归学习),记住"牛油→辣椒→花椒"的投放顺序(段落联合概率)
- 坑点:学徒刚开始连豆瓣酱和番茄酱都分不清(随机初始化),得反复纠正"放冰糖不是放味精"(损失函数调参)
这时候的学徒虽然能炒出香辣味,但客人要鸳鸯锅?抱歉,不会(此时模型还不会做具体任务)。
阶段二:私房定制(SFT)
某天来了个广东客户:"老板,我要椰子鸡火锅!"这时候就得开小灶教学。
- 教法:拿着80位粤菜大厨写的菜谱(人工标注数据),手把手教"先放椰青再煮鸡肉"(指令微调)
- 成本:光买文昌鸡就花了5000万(标注成本警告⚠️)
- 玄学:明明按菜谱操作,但学徒偶尔还是会搞错
- 过度依赖菜谱:“学徒严格按菜谱操作,但遇到新食材就手忙脚乱(过拟合)”
- 未充分学习菜谱:“学徒忘记关键步骤,煮出的汤底寡淡无味(欠拟合)”
这个阶段最考验你的资源协调能力:是花重金请米其林主厨写菜谱(高质量数据),还是让服务员集体上阵(众包标注)?
阶段三:大众点评逼死选择困难(Reward Model)
现在学徒能做出20种锅底了,但怎么判断哪个最好吃?
- 骚操作:让100个美食家盲测打分(人类标注排序),记录"A汤底比B鲜甜3分"(偏好数据)
- 潜规则:偷偷把得分高的菜谱塞给学徒参考(奖励模型训练)
- 血泪史:上次让湖南人给广式粥评分,直接给打成零分(标注偏差问题)
这时候你要化身端水大师:如何平衡不同用户群体的口味?要不要为川渝客户单独建评分体系?(垂直领域优化)
阶段四:后厨军备竞赛(PPO/DPO)
终于到了最刺激的环节——让学徒和美食家打配合战:
- OPEN AI流:每做一锅就让美食家现场打分,学徒边挨骂边改进(PPO强化学习)
- Meta流派:直接给学徒看"椰子鸡评分>猪肚鸡"的对比报告,让他自己悟(DPO直接优化)
- 翻车现场:有次学徒为了得高分,疯狂加味精被客户投诉(奖励模型设计缺陷)
这时候最怕老板突然说:"下周上新菌汤锅!"(需求变更),而你的标注团队还在度假
产品经理的生存指南
- 数据成本论:15吨辣椒的钱够买套房,但没这锅底连店都开不起来(预训练必要性)
- 标注陷阱:别让素食主义者给肥肠火锅打分(数据质量>数据数量)
- 算法选型:不是每家店都需要米其林评委团(根据场景选择PPO/DPO)
- 冷启动秘诀:先卖好红油锅底再拓展品类(垂直领域微调>盲目追求通用性)
最近在朋友和我吐槽智能客服项目,就深刻体会到大模型训练和餐饮业的相似之处:
- 客户说"要人性化服务"(生成结果需拟人化)
- 实际意思是"不能像机器人一样说车轱辘话"(避免AI味)
- 解决方案:在SFT阶段混入客服撕逼录音(业务数据注入),让模型学会"亲,这边建议您消消气呢~"(拟人化表达)
所以下次听到技术同学说"我们在做PPO迭代",不妨理解为:"后厨正在用大众点评差评逼厨师长改良菜谱呢!"